The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocophe...The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5+ 10.5), (316.2+ 9.2), and (559.1+ 24.3) ~tg g-~ of seed meal ct-, 7-, and total (T-) tocopherol, respectively, and a 0.44+0.04 ^- to 7-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.展开更多
Gas chromatography is an analytical tool for the separation of compounds in complex mixtures based on the polarity of compounds. Separation is achieved only for compounds that are volatile or that can be made volatile...Gas chromatography is an analytical tool for the separation of compounds in complex mixtures based on the polarity of compounds. Separation is achieved only for compounds that are volatile or that can be made volatile on derivatization of the compound using derivatizing agents. This is one of the widely accepted tools for the separation of compounds because of its simplicity, sensitivity, and effectiveness. The principle of separation of compounds depends on the partitioning behaviour difference between mobile and stationary phase, the sample is carried by a moving gas stream through a tube packed with a finely divided solid or may be coated with a film of a liquid. Different types of columns having a various composition of stationary phase are been used for the separation of different classes of compounds mixture or sample in a suitable solvent is introduced through the injector maintained at higher temperature which is capable of volatilizing the compound into the column.展开更多
The present work describes the amount of Di-n- butyl phosphate (DBP) produced when PUREX solvent (30%tri-n-butyl phosphate (TBP) mixed with 70% hydrocarbon diluent) is exposed to intensive radiolytic and chemical at- ...The present work describes the amount of Di-n- butyl phosphate (DBP) produced when PUREX solvent (30%tri-n-butyl phosphate (TBP) mixed with 70% hydrocarbon diluent) is exposed to intensive radiolytic and chemical at- tack during the separation of uranium and plutonium from fission products of FBTR mixed carbide fuel reprocessing solution. DBP is the major degradation product of Tri-n-butyl phosphate (TBP). Amount of DBP formed in the lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solutions were analyzed by Gas Chromatographic technique. The method is based on the preparation of diazo methane and conversion of non-volatile Di-n-butyl phosphate in to volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatography (GC). A calibration graph was made for DBP over a concentration in the range from 200 to 1800 ppm with correlation coefficient of 0.99587 and RSD 1.2%. The degraded 30% TBP-NPH solvent loaded with heavy metal ions like uranium was analyzed after repeated use and results are compared with standard ion chromatographic technique. A column comparison study to select of proper gas chromatographic column for the separation of DBP from other components in a single aliquot of injection is also examined.展开更多
A new detection system consisted of a flame ionization detector(FID) and a sulfur chemiluminescence detector(SCD) was developed for sensitive and interference free determination of total sulfur in natural gas by n...A new detection system consisted of a flame ionization detector(FID) and a sulfur chemiluminescence detector(SCD) was developed for sensitive and interference free determination of total sulfur in natural gas by non-separation gas chromatography. In this system, sulfur containing compounds and hydrocarbons were firstly burned in the FID using oxygen rich flame and converted to SO_2, CO_2 and H_2O, respectively. The products from FID were transported into the SCD with hydrogen rich atmosphere wherein only SO_2 could be reduced to SO and reacted with O_3 to produce characteristic chemiluminescence. Therefore, the chemiluminescence of CO found in conventional SCD were eliminated because CO_2 could not be reduced to CO under these conditions. The experimental parameters were systematically investigated. Limit of detection obtained by the proposed system is better than 0.5 mmol/mol for total sulfur and superior to those previously reported. The proposed method not only retains the advantages of the conventional SCD but also provides several unique advantages including no hydrocarbon interference, better stability, and easier calculation. The utility of this technique was demonstrated by the determination of total sulfur in real samples and two certified reference materials(GBW 06332 and GBW(E) 061320).展开更多
Eight fatty acids from beaver oil were identified by GC-9A, and their contents were determinded. A simple yet effective method for separation and quantification was described. Contents of the fatty acids were related ...Eight fatty acids from beaver oil were identified by GC-9A, and their contents were determinded. A simple yet effective method for separation and quantification was described. Contents of the fatty acids were related to their conditions of extraction.展开更多
Metabolism of free fatty acids(FFAs) is related to several important physiological events and therefore their quantitaion in biological samples arouses extensive interest and efforts.Existing gas chromatography with...Metabolism of free fatty acids(FFAs) is related to several important physiological events and therefore their quantitaion in biological samples arouses extensive interest and efforts.Existing gas chromatography with flame ionization detector(GC-FID) methods for the analysis of FFAs normally require derivatization of them in order to lower boiling points.But this extra procedure tends to induce additional error and it is laborious and time-consuming.A derivatization-free method was therefore established in the present investigation to determine FFAs in human plasma by capillary(GC-FID).After extraction of FFAs from plasma,a highly polar FFAP(free fatty acid in plasma) column was employed to directly quantitate FFAs concentration,free from derivatization reaction.All sample pretreatments were carried out at room temperature,improving recovery of short-chain FFAs.Heptadecanoic acid(C17:0) was employed as internal standard,and the proposed method was validated for recovery,precision,sensitivity,stabi-lity,and linearity.Validation data show that it is suitable for clinical study that has been applied to the evaluation of FFAs levels in plasma of diabetic nephropathy(DN) patients during the course of treatment.Forty-seven patients diagnosed with DN were admitted to the double-blind experiment.Control group(n=17) underwent solely basic treatment and the patients did not show significant change in FFAs concentration during six months of treatment.Experiment group(n=30) was supplied with traditional Chinese medicine besides basic treatment.After six months of medication,their plasma concentration of palmitic acid(C16:0),stearic acid(C18:0) and oleic acid(C18:1n-9) decreased while linolenic acid(C18:3n-3) increased significantly(P〈0.05).These four compounds could be served as biomar-kers in the evaluation of drug efficacy,and their quantitation in plasma may provide additional information for disease progression in DN patients.展开更多
基金supported by the National Natural Science Foundation of China (30971700 and 31171463)Natural Science Foundation of Zhejiang Province (Z3100130)
文摘The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5+ 10.5), (316.2+ 9.2), and (559.1+ 24.3) ~tg g-~ of seed meal ct-, 7-, and total (T-) tocopherol, respectively, and a 0.44+0.04 ^- to 7-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.
文摘Gas chromatography is an analytical tool for the separation of compounds in complex mixtures based on the polarity of compounds. Separation is achieved only for compounds that are volatile or that can be made volatile on derivatization of the compound using derivatizing agents. This is one of the widely accepted tools for the separation of compounds because of its simplicity, sensitivity, and effectiveness. The principle of separation of compounds depends on the partitioning behaviour difference between mobile and stationary phase, the sample is carried by a moving gas stream through a tube packed with a finely divided solid or may be coated with a film of a liquid. Different types of columns having a various composition of stationary phase are been used for the separation of different classes of compounds mixture or sample in a suitable solvent is introduced through the injector maintained at higher temperature which is capable of volatilizing the compound into the column.
文摘The present work describes the amount of Di-n- butyl phosphate (DBP) produced when PUREX solvent (30%tri-n-butyl phosphate (TBP) mixed with 70% hydrocarbon diluent) is exposed to intensive radiolytic and chemical at- tack during the separation of uranium and plutonium from fission products of FBTR mixed carbide fuel reprocessing solution. DBP is the major degradation product of Tri-n-butyl phosphate (TBP). Amount of DBP formed in the lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solutions were analyzed by Gas Chromatographic technique. The method is based on the preparation of diazo methane and conversion of non-volatile Di-n-butyl phosphate in to volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatography (GC). A calibration graph was made for DBP over a concentration in the range from 200 to 1800 ppm with correlation coefficient of 0.99587 and RSD 1.2%. The degraded 30% TBP-NPH solvent loaded with heavy metal ions like uranium was analyzed after repeated use and results are compared with standard ion chromatographic technique. A column comparison study to select of proper gas chromatographic column for the separation of DBP from other components in a single aliquot of injection is also examined.
基金the National Science and Technology Supporting Plan(No.2013BAK12B04)for financial support
文摘A new detection system consisted of a flame ionization detector(FID) and a sulfur chemiluminescence detector(SCD) was developed for sensitive and interference free determination of total sulfur in natural gas by non-separation gas chromatography. In this system, sulfur containing compounds and hydrocarbons were firstly burned in the FID using oxygen rich flame and converted to SO_2, CO_2 and H_2O, respectively. The products from FID were transported into the SCD with hydrogen rich atmosphere wherein only SO_2 could be reduced to SO and reacted with O_3 to produce characteristic chemiluminescence. Therefore, the chemiluminescence of CO found in conventional SCD were eliminated because CO_2 could not be reduced to CO under these conditions. The experimental parameters were systematically investigated. Limit of detection obtained by the proposed system is better than 0.5 mmol/mol for total sulfur and superior to those previously reported. The proposed method not only retains the advantages of the conventional SCD but also provides several unique advantages including no hydrocarbon interference, better stability, and easier calculation. The utility of this technique was demonstrated by the determination of total sulfur in real samples and two certified reference materials(GBW 06332 and GBW(E) 061320).
文摘Eight fatty acids from beaver oil were identified by GC-9A, and their contents were determinded. A simple yet effective method for separation and quantification was described. Contents of the fatty acids were related to their conditions of extraction.
基金Supported by the National Basic Research Program of China(Nos.2007CB511903,2005CB523503)the International Cooperation Project of Ministry of Science and Technology of China(No.S2010GR0583)the National Natural Science Founda- tion of China(Nos.90709045,20805026)
文摘Metabolism of free fatty acids(FFAs) is related to several important physiological events and therefore their quantitaion in biological samples arouses extensive interest and efforts.Existing gas chromatography with flame ionization detector(GC-FID) methods for the analysis of FFAs normally require derivatization of them in order to lower boiling points.But this extra procedure tends to induce additional error and it is laborious and time-consuming.A derivatization-free method was therefore established in the present investigation to determine FFAs in human plasma by capillary(GC-FID).After extraction of FFAs from plasma,a highly polar FFAP(free fatty acid in plasma) column was employed to directly quantitate FFAs concentration,free from derivatization reaction.All sample pretreatments were carried out at room temperature,improving recovery of short-chain FFAs.Heptadecanoic acid(C17:0) was employed as internal standard,and the proposed method was validated for recovery,precision,sensitivity,stabi-lity,and linearity.Validation data show that it is suitable for clinical study that has been applied to the evaluation of FFAs levels in plasma of diabetic nephropathy(DN) patients during the course of treatment.Forty-seven patients diagnosed with DN were admitted to the double-blind experiment.Control group(n=17) underwent solely basic treatment and the patients did not show significant change in FFAs concentration during six months of treatment.Experiment group(n=30) was supplied with traditional Chinese medicine besides basic treatment.After six months of medication,their plasma concentration of palmitic acid(C16:0),stearic acid(C18:0) and oleic acid(C18:1n-9) decreased while linolenic acid(C18:3n-3) increased significantly(P〈0.05).These four compounds could be served as biomar-kers in the evaluation of drug efficacy,and their quantitation in plasma may provide additional information for disease progression in DN patients.