As a new technology of analyzing crude oils, comprehensive two-dimensional gas chromatography cou- pled with time-of-flight mass spectrometry (GCxGC- TOFMS) has received much research attention. Here we present a ca...As a new technology of analyzing crude oils, comprehensive two-dimensional gas chromatography cou- pled with time-of-flight mass spectrometry (GCxGC- TOFMS) has received much research attention. Here we present a case study in the Junggar Basin of NW China. Results show that the hydrocarbons, including saturates and aromatics, were all well-separated without large co- elution, which cannot be realized by conventional one-dimensional GC-MS. The GC×GC technique is especially effective for analyzing aromatics and low-to-middle- molecular-weight hydrocarbons, such as diamondoids. The geochemical characteristics of crude oils in the study area were investigated through geochemical parameters extracted by GC×GC-TOFMS, improving upon the understanding obtained by GC-MS. Thus, the work here represents a new successful application of GC×GC- TOFMS, showing its broad usefulness in petroleum geochemistry.展开更多
The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/M...The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.展开更多
AIM:To elucidate the underlying mechanisms of metastasis and to identify the metabolomic markers of gastric cancer metastasis.METHODS:Gastric tumors from metastatic and nonmetastatic groups were used in this study.Met...AIM:To elucidate the underlying mechanisms of metastasis and to identify the metabolomic markers of gastric cancer metastasis.METHODS:Gastric tumors from metastatic and nonmetastatic groups were used in this study.Metabolites and different metabolic patterns were analyzed by gas chromatography,mass spectrometry and principal components analysis (PCA),respectively.Differentiation performance was validated by the area under the curve (AUC) of receiver operating characteristic curves.RESULTS:Twenty-nine metabolites were differentially expressed in animal models of human gastric cancer.Of the 29 metabolites,20 were up-regulated and 9 were down-regulated in metastasis group compared to non-metastasis group.PCA models from the metabolite profiles could differentiate the metastatic from the nonmetastatic specimens with an AUC value of 1.0.These metabolites were mainly involved in several metabolic pathways,including glycolysis (lactic acid,alaline),serine metabolism (serine,phosphoserine),proline metabolism (proline),glutamic acid metabolism,tricarboxylic acid cycle (succinate,malic acid),nucleotide metabolism (pyrimidine),fatty acid metabolism (docosanoic acid,and octadecanoic acid),and methylation(glycine).The serine and proline metabolisms were highlighted during the progression of metastasis.CONCLUSION:Proline and serine metabolisms play an important role in metastasis.The metabolic profiling of tumor tissue can provide new biomarkers for the treatment of gastric cancer metastasis.展开更多
Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensi...Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(2 D-LC/IM-QTOF-MS)enabling four-dimensional separations(2 D-LC,IM,and MS),is proposed.In combination with in-house database-driven automated peak annotation,this strategy was utilized to characterize ginsenosides simultaneously from white ginseng(WG)and red ginseng(RG).An offline 2 DLC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides.Ginsenoside analysis was performed by data-independent high-definition MSE(HDMSE)in the negative ESI mode on a Vion?IMS-QTOF hybrid high-resolution mass spectrometer,which could better resolve ginsenosides than MSEand directly give the CCS information.An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds,was established to assist the identification of ginsenosides.Streamlined workflows,by applying UNIFI?to automatedly annotate the HDMSEdata,were proposed.We could separate and characterize 323 ginsenosides(including 286 from WG and 306 from RG),and 125 thereof may have not been isolated from the Panax genus.The established 2 D-LC/IM-QTOF-HDMSEapproach could also act as a magnifier to probe differentiated components between WG and RG.Compared with conventional approaches,this dimensionenhanced strategy could better resolve coeluting herbal components and more efficiently,more reliably identify the multicomponents,which,we believe,offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.展开更多
AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome(IBS).METHODS In the current study, using a metabolomic approach, we analyzed the ...AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome(IBS).METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum(C. butyricum) treatment. C57 BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress(WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry(GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS(days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A(Co A) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways.CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism.展开更多
Essential oil, with more than thirty kinds of compounds separated and identified by gas chromatography-mass spectrometry, was extracted from Shatian shaddock peel and Sweet shaddock peel by squeeze-steam distillation ...Essential oil, with more than thirty kinds of compounds separated and identified by gas chromatography-mass spectrometry, was extracted from Shatian shaddock peel and Sweet shaddock peel by squeeze-steam distillation and direct steam distillation method. Among their composition, the main components are terpene compounds, which account for 93.926% (mass fraction, the same below) and 85.843% of essential oils extracted from Shatian shaddock peel and Sweet shaddock peel, respectively. Although nootkatone is the major contributor of shaddock characteristic scent, and its contents are 1.069% and 1.749% of essential oils from Sweet shaddock peel and Shatian shaddock peel, respectively. The results show that squeeze-steam distillation gives higher yield and good quality of essential oil and the compositions of essential oils from two kinds of shaddock peels are different, but the main contributors of the shaddock scent are the same.展开更多
A fast and sensitive method for determination of 8 diuretics (acetazolamide, bendroflumethiazide, bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, metolazone, triamterene) and masking agent (probenecid) in...A fast and sensitive method for determination of 8 diuretics (acetazolamide, bendroflumethiazide, bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, metolazone, triamterene) and masking agent (probenecid) in human urine using gas-chromatography with mass spectrometric detection is described. The extraction of the substances as function of the nature of organic solvent, mixing time and pH of aqueous phase was studied. The tandem mass spectrometry was used to increase selectivity of diuretics determination due to elimination of background interferences. Fragmentation reactions were studied for each compound and their collision energies were optimized to obtain the best selectivity. The results of method’s validation demonstrate its suitability in routine analysis for confirmation purposes.展开更多
Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro...Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.展开更多
The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a co...The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.展开更多
This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacteri...This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacterial strain of Pseudomonas aeruginosa and sputum sample of a cystic fibrosis patient. This method involves direct separation and determination of AHLs by using GC-MS as simultaneous separation and characterization of AHLs were possible without any prior derivatiza-tion. Electron ionization resulted in a common fragmentation pattern with the most common fragment ion at m/z 143 and other minor peaks at 73, 57 and 43. The limit of detection for N-butanoyl, N-hexanoyl, N-octanoyl, N-decanoyl, N-dodecanoyl and N-tetradecanoyl homoserine lactones was 2.14, 3.59, 2.71, 2.10, 2.45 and 2.34 μg/L, respectively. The presence of AHLs in the culture of P. aeruginosa strain and spu-tum of a cystic fibrosis patient was achieved in selected ion monitoring (SIM) mode by using the prominent fragment at m/z 143.展开更多
Cortinarius orellanus (Fries) and C. rubellus (Cooke),which were formerly also known as C. speciosissimus, are poisonous mushrooms containing the toxin orellanine and several degradation products of orellanine,includi...Cortinarius orellanus (Fries) and C. rubellus (Cooke),which were formerly also known as C. speciosissimus, are poisonous mushrooms containing the toxin orellanine and several degradation products of orellanine,includingorelline and orellinine. Mass intoxication by poisonous mushrooms was observed in Poland in 1952-1957 [1]. In 1957, the cause of these outbreaks was described by Grzymala as poisoning by a member of the Cortinarius family. The toxin orellanine was first isolated from C. orellanusby Grzymala in 1962;the chemical structure of orellanine was later determined to be 3,3',4,4'-tetrahydroxy-2,2'-bipyridine-N,N'-dioxide. Poisoning with C. orellanus and C. rubellus has a very specific character. The first symptoms of intoxication usually do not appear until 2-3 days after ingestion, but in some cases intoxication appears after three weeks. The target organ for the toxin is the kidney. Histologically, it is easy to record the specific damage. The presence of degradation products of orellanine in kidney can be confirmed chromatographically, suggesting that the cause of poisoning is orellanine. However, the presence of orellanine in the blood of intoxicated persons has not been directly detected. A specific model was developed by Brondz et al. for the detection of orellanine, orelline, and orellininein animal stomach fluids [2-4]. The hypothesis that the fungal toxin orellanine as a diglucoside can be transported from the digestive system by the blood to the kidney could not be supported. The toxin orellanine as a diglucoside is very unstable in an aqueous acidic environment.[i1]?However, in the present study, it was possible to record an additional substance in animal stomach fluids using GC-MSafter ingestion ofC. rubellus. This substance, which has been namedrubelline, is part of a toxic mixture inC. orellanusandC. rubellusand is closely related to orellanine. The structure of rubelline is more suitable than orellanine for absorptionfromthe digestive tract and for transport in the blood. The presented hypothesis is that rubellineis absorbed in the digestive tract and transportedin the blood to the kidney, where it is biotransformed to orellanine and accumulatedto toxic levels. The process of biotransformationis in itself also damaging for the kidney and liver.[i2]?GC-MS instrumentation enables the separation of substances in biological samples and in the extract fromC. rubellus. The GC-MS with SMB technique was used to record the mass ion and to record a detailed fragmentation picture.展开更多
In present work,the volatile constituents of Curcuma longa L.,A.lancea (Thunb.) DC.,Foeniculum vulgare Mill,and Cinnamomun cassia Presl.have been analyzed by flash distillation/capillary gas chro-matography/mass spect...In present work,the volatile constituents of Curcuma longa L.,A.lancea (Thunb.) DC.,Foeniculum vulgare Mill,and Cinnamomun cassia Presl.have been analyzed by flash distillation/capillary gas chro-matography/mass spectrometry.The results are consistent with those obtained by conventional steam distillation extraction method.The optimum condition of flash distillation has been studied.The experimental results showed that this new technique proved to be a simple,rapid and efficient tool for microanalysis of volatile constituents of Chinese medicinal herbs.展开更多
Marijuana use as well as abuse is a significant public health and public safety concern in the United States and using hair to identify marijuana users and abusers has been gaining acceptance in a number of venues inc...Marijuana use as well as abuse is a significant public health and public safety concern in the United States and using hair to identify marijuana users and abusers has been gaining acceptance in a number of venues including workplace, court ordered, and substance abuse treatment monitoring. After the presentation of a fully validated 2-dimensional gas chromatography-tandem mass spectrometry method for the detection of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCA), the chief metabolite of the main psychoactive compound in marijuana, Δ9-tetrahydrocannabinol (THC), we evaluated the usefulness of fingernail clippings as an alternative specimen type to hair by the analysis of a set of 60 matched pairs of head hair and fingernail clippings. The limit of detection was 10 fg/mg, the limit of quantitation was 20 fg/mg, and the assay was linear from 20 fg/mg to 500 fg/mg. The intra- and inter-assay imprecision and bias studies at 4 different concentrations (50, 100, 500, and 1000 fg/mg) were acceptable where all % Target observations were within 16% of their expected concentrations and all %CV calculations were less than 13.5%. THCA was detectable in more fingernail specimens (53.3%) than hair specimens (46.7%) and the mean concentrations in nails were on average 4.9 times higher than in hair (1813 fg/mg and 364 fg/mg, respectively). The THCA concentrations in hair and nail were strongly associated (r = 0.974, P < 0.01, n = 60) and the association was significant. The study demonstrated that fingernail clippings are a suitable alternative specimen type to hair to monitor for marijuana use and abuse.展开更多
In order to identify the potential nephrotoxic compounds in traditional Chinese medicine Lithospermum erythrorhizon,it was separated into serial fractions according to their polarities.An in vitro method was utilized ...In order to identify the potential nephrotoxic compounds in traditional Chinese medicine Lithospermum erythrorhizon,it was separated into serial fractions according to their polarities.An in vitro method was utilized to determine the nephrotoxicity of these fractions with the help of fluorescence image analysis.As a result,the primary fraction A05 and its secondary fractions C06 "C09 and C12 "C14 were found to have significant toxicity to LLC-PK1 cell line,as determined by the survive rate less than 20% after they were treated with these fractions.These potential nephrotoxic fractions were further analyzed by multistage and high resolution mass spectrometry.The main compounds in these fractions were tentatively identified to be acetylshikonin,isobutyrylshikonin,β,β'-dimethyla-cryloylshikonin,and isovalerylshikonin,which may bring nephrotoxicity.展开更多
Although the eminent threat of a terrorist group detonating an improvised nuclear device (IND) in an urban environment is low, it is crucial that countries develop modern nuclear forensic capabilities to expedite resp...Although the eminent threat of a terrorist group detonating an improvised nuclear device (IND) in an urban environment is low, it is crucial that countries develop modern nuclear forensic capabilities to expedite response in a post-detonation scenario. In particular, new instruments need to be created to shorten dissolution time, expedite chemical separation, and improve forensic analysis of the nuclear melt glass that is created during the detonation of the device. To expedite this process, an instrument was designed to thermally couple a gas chromatograph (GC) to a time-of-flight inductively coupled plasma time-of-flight mass spectrometer (ICPTOFMS) In order to couple these two instruments, another instrument was designed to provide an isothermal atmosphere between the GC and TOFICPMS to expedite rapid gas separations processes. By using gas separations instead of the current wet chemistry processes, the required separation and analysis time of the melt glass significantly decreases. The new instrument would also provide a more detailed analysis of the elemental and isotopic composition of the melt glass. By completing these tasks simultaneously, this significantly decreases the required time to conduct these separations and improves the elemental and isotopic analysis.展开更多
Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively...Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively inert, causing no irritation and allergies. Poly(ethylene oxide)(PEO) hydrogels were prepared using pentaerythritol tetra-acrylate(PETRA) as UV crosslinking agent. A simple, accurate, and robust quantitation method was developed based on gas chromatographic techniques(GC), which is suitable for routine analysis of residual PETRA monomers in these hydrogels. Unreacted PETRA was initially identified using gas chromatography–mass spectrometry(GC–MS). The quantitation of analyte was performed and validated using gas chromatography equipped with a flame ionization detector(GC–FID). A linear relationship was obtained over the range of 0.0002%–0.0450%(m/m) with a correlation coefficient(r2)greater than 0.99. The recovery( 4 90%), intra-day precision(%RSD o 0.67), inter-day precision(%RSD o2.5%), and robustness(%RSD o1.62%) of the method were within the acceptable values. The limit of detection(LOD) and limit of quantitation(LOQ) were 0.0001%(m/m) and 0.0002%(m/m), respectively.This assay provides a simple and quick way of screening for residual acrylate monomer in hydrogels.展开更多
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry(GC×GC-TOFMS) is commercially available in the 1990s,with the characteristics of large peak capacity,high resolution,h...Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry(GC×GC-TOFMS) is commercially available in the 1990s,with the characteristics of large peak capacity,high resolution,high sensitivity,etc.However,its application to the petroleum and geological analyses is just emerging in China and overseas.In this research,the analytical method for petroleum aromatic fraction using GC×GC-TOFMS is set up,via the choice of the column system and optimization of setting parameters,such as temperature programming,modulation time,hot pulse time,flow rate of carrier gas,data acquisition rate and data processing.The results indicate that different polar compounds of aromatic fraction distribute as bands on structured GC×GC chromatogram.Within each band,homologous compounds appear as a roof-tile structure based on the number of substituent residues.The aromatic compounds are identified and characterized according to the GC×GC chromatogram and mass spectra.According to the polarity and the number of rings,aromatic compounds are spatially present on one chromatogram,which directly reflects the distribution characteristics of complex compounds of aromatic hydrocarbons.In addition,quantitative analysis is favored as some overlapped peaks on traditional GC-MS chromatogram have been separated completely on GC×GC.Some heterocyclic atom aromatic compounds at trace level can be clearly identified using this method,for polarity differences from other interfered aromatic compounds.The development of this method and chromatogram recognition offer petroleum geologists a practical example for the application performance of GC×GC-TOFMS.展开更多
The saturated and aromatic hydrocarbon fractions of crude oil samples have been analyzed by using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and conventional...The saturated and aromatic hydrocarbon fractions of crude oil samples have been analyzed by using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and conventional gas chro- matography-mass spectrometry (GC-MS). In order to investigate the consistency and discrepancy of the obtained data from the two instruments, some petroleum geochemical parameters have been compared. A comparison of 23 geochemical parameters indicates that 10 parameters are comparable from the two instruments with less than 5% deviations. Therefore, GCxGC-TOFMS is equivalent to conventional GC-MS in some geochemical parameter acquisitions. However, the other 13 parameters are discrepant, including gammacerane / αβ-hopane, Ts/Tm, 2-ethyl-naphthalene / 1-ethyl-naphthalene (ENR), (2, 6-dimethyl-naphthalene +2,7-dimethyl-naphthalene) / 1,5-dimethyl-naphthalene (DNR), etc. Furthermore, compared to GCxGC-TOFMS, some low concentration compounds could not be detected by the conventional GC-MS, which results in the missing of related geochemical data. Normally, this is caused by the limited separation power and peak capacity of the conventional GC column. Besides, the co-eluting peak integrations are also affected significantly due to the incomplete separation of the compounds. Some low concentration compounds might not be detected because of the interference from the baseline noise or from other substances. GCxGC-TOFMS prevails in compound separation against the conventional GC-MS by avoiding co-elution, which achieves more accurate and precise peak area measurement with the presence of a true baseline. So petroleum geochemical parameters obtained from the GCxGC-TOFMS GCxGC-TOFMS may become one of the most effective analytical are more reliable than those from the conventional GC-MS tools for the oil and gas geochemical study.展开更多
Metabolomics is a field of study in systems biology that involves the identification and quantification of metabolites present in a biological system. Analyzing metabolic differences between unperturbed and perturbed ...Metabolomics is a field of study in systems biology that involves the identification and quantification of metabolites present in a biological system. Analyzing metabolic differences between unperturbed and perturbed networks, such as cancerous and noncancerous samples, can provide insight into underlying disease pathology, disease prognosis and diagnosis. Despite the large number of review articles concerning metabolomics and its application in cancer research, biomarker and drug discovery, these reviews do not focus on a specific type of cancer. Metabolomics may provide biomarkers useful for identification of early stage gastric cancer, potentially addressing an important clinical need. Here, we present a short review on metabolomics as a tool for biomarker discovery in human gastric cancer, with a primary focus on its use as a predictor of anticancer drug chemosensitivity, diagnosis, prognosis, and metastasis.展开更多
AIM:To gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic values to predict tumor metastasis.METHODS:Human gastric cancer SGC-7901 cells were implanted into 24 severe...AIM:To gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic values to predict tumor metastasis.METHODS:Human gastric cancer SGC-7901 cells were implanted into 24 severe combined immune deficiency (SCID) mice,which were randomly divided into metastasis group (n=8),non-metastasis group (n=8),and normal group (n=8).Urinary metabolomic information was obtained by gas chromatography/mass spectrometry (GC/MS).RESULTS:There were significant metabolic differences among the three groups (t test,P < 0.05).Ten selected metabolites were different between normal and cancer groups (non-metastasis and metastasis groups),and seven metabolites were also different between non-metastasis and metastasis groups.Two diagnostic models for gastric cancer and metastasis were constructed respectively by the principal component analysis (PCA).These PCA models were confirmed by corresponding receiver operating characteristic analysis (area under the curve=1.00).CONCLUSION:The urinary metabolomic profile is different,and the selected metabolites might be instructive to clinical diagnosis or screening metastasis for gastric cancer.展开更多
基金funded by the Major State Basic Research Development Program of China(973 project,Grant No.2012CB214803)National Science and Technology Major Project of China(Grant No. 2016ZX05003-005)National Natural Science Foundation of China(Grant Nos.41322017 and 41472100)
文摘As a new technology of analyzing crude oils, comprehensive two-dimensional gas chromatography cou- pled with time-of-flight mass spectrometry (GCxGC- TOFMS) has received much research attention. Here we present a case study in the Junggar Basin of NW China. Results show that the hydrocarbons, including saturates and aromatics, were all well-separated without large co- elution, which cannot be realized by conventional one-dimensional GC-MS. The GC×GC technique is especially effective for analyzing aromatics and low-to-middle- molecular-weight hydrocarbons, such as diamondoids. The geochemical characteristics of crude oils in the study area were investigated through geochemical parameters extracted by GC×GC-TOFMS, improving upon the understanding obtained by GC-MS. Thus, the work here represents a new successful application of GC×GC- TOFMS, showing its broad usefulness in petroleum geochemistry.
文摘The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.
基金Supported by Grants from Shanghai Key Program of Science and Technology Committee(09JC1411600)Shanghai Natural Science Foundation(08ZR1411300)
文摘AIM:To elucidate the underlying mechanisms of metastasis and to identify the metabolomic markers of gastric cancer metastasis.METHODS:Gastric tumors from metastatic and nonmetastatic groups were used in this study.Metabolites and different metabolic patterns were analyzed by gas chromatography,mass spectrometry and principal components analysis (PCA),respectively.Differentiation performance was validated by the area under the curve (AUC) of receiver operating characteristic curves.RESULTS:Twenty-nine metabolites were differentially expressed in animal models of human gastric cancer.Of the 29 metabolites,20 were up-regulated and 9 were down-regulated in metastasis group compared to non-metastasis group.PCA models from the metabolite profiles could differentiate the metastatic from the nonmetastatic specimens with an AUC value of 1.0.These metabolites were mainly involved in several metabolic pathways,including glycolysis (lactic acid,alaline),serine metabolism (serine,phosphoserine),proline metabolism (proline),glutamic acid metabolism,tricarboxylic acid cycle (succinate,malic acid),nucleotide metabolism (pyrimidine),fatty acid metabolism (docosanoic acid,and octadecanoic acid),and methylation(glycine).The serine and proline metabolisms were highlighted during the progression of metastasis.CONCLUSION:Proline and serine metabolisms play an important role in metastasis.The metabolic profiling of tumor tissue can provide new biomarkers for the treatment of gastric cancer metastasis.
基金the National Natural Science Foundation of China(Grant No.81872996)the State Key Research and Development Project(Grant No.2017YFC1702104)+1 种基金the State Key Project for the Creation of Major New Drugs(2018ZX09711001-009-010)the Tianjin Municipal Education Commission Research Project(Grant No.2017ZD07)。
文摘Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(2 D-LC/IM-QTOF-MS)enabling four-dimensional separations(2 D-LC,IM,and MS),is proposed.In combination with in-house database-driven automated peak annotation,this strategy was utilized to characterize ginsenosides simultaneously from white ginseng(WG)and red ginseng(RG).An offline 2 DLC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides.Ginsenoside analysis was performed by data-independent high-definition MSE(HDMSE)in the negative ESI mode on a Vion?IMS-QTOF hybrid high-resolution mass spectrometer,which could better resolve ginsenosides than MSEand directly give the CCS information.An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds,was established to assist the identification of ginsenosides.Streamlined workflows,by applying UNIFI?to automatedly annotate the HDMSEdata,were proposed.We could separate and characterize 323 ginsenosides(including 286 from WG and 306 from RG),and 125 thereof may have not been isolated from the Panax genus.The established 2 D-LC/IM-QTOF-HDMSEapproach could also act as a magnifier to probe differentiated components between WG and RG.Compared with conventional approaches,this dimensionenhanced strategy could better resolve coeluting herbal components and more efficiently,more reliably identify the multicomponents,which,we believe,offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.
基金Supported by the National Natural Science Foundation of China,No.81470814 and No.81400594Zhejiang Provincial Natural Science Foundation of China,No.LQ14H160014
文摘AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome(IBS).METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum(C. butyricum) treatment. C57 BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress(WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry(GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS(days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A(Co A) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways.CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism.
文摘Essential oil, with more than thirty kinds of compounds separated and identified by gas chromatography-mass spectrometry, was extracted from Shatian shaddock peel and Sweet shaddock peel by squeeze-steam distillation and direct steam distillation method. Among their composition, the main components are terpene compounds, which account for 93.926% (mass fraction, the same below) and 85.843% of essential oils extracted from Shatian shaddock peel and Sweet shaddock peel, respectively. Although nootkatone is the major contributor of shaddock characteristic scent, and its contents are 1.069% and 1.749% of essential oils from Sweet shaddock peel and Shatian shaddock peel, respectively. The results show that squeeze-steam distillation gives higher yield and good quality of essential oil and the compositions of essential oils from two kinds of shaddock peels are different, but the main contributors of the shaddock scent are the same.
文摘A fast and sensitive method for determination of 8 diuretics (acetazolamide, bendroflumethiazide, bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, metolazone, triamterene) and masking agent (probenecid) in human urine using gas-chromatography with mass spectrometric detection is described. The extraction of the substances as function of the nature of organic solvent, mixing time and pH of aqueous phase was studied. The tandem mass spectrometry was used to increase selectivity of diuretics determination due to elimination of background interferences. Fragmentation reactions were studied for each compound and their collision energies were optimized to obtain the best selectivity. The results of method’s validation demonstrate its suitability in routine analysis for confirmation purposes.
基金National Natural Science Foundation of China(Grant No.81872996)Natural Science Foundation of Tianjin of China(Grant No.20JCYBJC00060).
文摘Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2018YFC1704500)Tianjin Committee of Science and Technology of China(Grant No.21ZYJDJC00080)National Natural Science Foundation of China(Grant No.81872996).
文摘The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.
文摘This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacterial strain of Pseudomonas aeruginosa and sputum sample of a cystic fibrosis patient. This method involves direct separation and determination of AHLs by using GC-MS as simultaneous separation and characterization of AHLs were possible without any prior derivatiza-tion. Electron ionization resulted in a common fragmentation pattern with the most common fragment ion at m/z 143 and other minor peaks at 73, 57 and 43. The limit of detection for N-butanoyl, N-hexanoyl, N-octanoyl, N-decanoyl, N-dodecanoyl and N-tetradecanoyl homoserine lactones was 2.14, 3.59, 2.71, 2.10, 2.45 and 2.34 μg/L, respectively. The presence of AHLs in the culture of P. aeruginosa strain and spu-tum of a cystic fibrosis patient was achieved in selected ion monitoring (SIM) mode by using the prominent fragment at m/z 143.
文摘Cortinarius orellanus (Fries) and C. rubellus (Cooke),which were formerly also known as C. speciosissimus, are poisonous mushrooms containing the toxin orellanine and several degradation products of orellanine,includingorelline and orellinine. Mass intoxication by poisonous mushrooms was observed in Poland in 1952-1957 [1]. In 1957, the cause of these outbreaks was described by Grzymala as poisoning by a member of the Cortinarius family. The toxin orellanine was first isolated from C. orellanusby Grzymala in 1962;the chemical structure of orellanine was later determined to be 3,3',4,4'-tetrahydroxy-2,2'-bipyridine-N,N'-dioxide. Poisoning with C. orellanus and C. rubellus has a very specific character. The first symptoms of intoxication usually do not appear until 2-3 days after ingestion, but in some cases intoxication appears after three weeks. The target organ for the toxin is the kidney. Histologically, it is easy to record the specific damage. The presence of degradation products of orellanine in kidney can be confirmed chromatographically, suggesting that the cause of poisoning is orellanine. However, the presence of orellanine in the blood of intoxicated persons has not been directly detected. A specific model was developed by Brondz et al. for the detection of orellanine, orelline, and orellininein animal stomach fluids [2-4]. The hypothesis that the fungal toxin orellanine as a diglucoside can be transported from the digestive system by the blood to the kidney could not be supported. The toxin orellanine as a diglucoside is very unstable in an aqueous acidic environment.[i1]?However, in the present study, it was possible to record an additional substance in animal stomach fluids using GC-MSafter ingestion ofC. rubellus. This substance, which has been namedrubelline, is part of a toxic mixture inC. orellanusandC. rubellusand is closely related to orellanine. The structure of rubelline is more suitable than orellanine for absorptionfromthe digestive tract and for transport in the blood. The presented hypothesis is that rubellineis absorbed in the digestive tract and transportedin the blood to the kidney, where it is biotransformed to orellanine and accumulatedto toxic levels. The process of biotransformationis in itself also damaging for the kidney and liver.[i2]?GC-MS instrumentation enables the separation of substances in biological samples and in the extract fromC. rubellus. The GC-MS with SMB technique was used to record the mass ion and to record a detailed fragmentation picture.
文摘In present work,the volatile constituents of Curcuma longa L.,A.lancea (Thunb.) DC.,Foeniculum vulgare Mill,and Cinnamomun cassia Presl.have been analyzed by flash distillation/capillary gas chro-matography/mass spectrometry.The results are consistent with those obtained by conventional steam distillation extraction method.The optimum condition of flash distillation has been studied.The experimental results showed that this new technique proved to be a simple,rapid and efficient tool for microanalysis of volatile constituents of Chinese medicinal herbs.
文摘Marijuana use as well as abuse is a significant public health and public safety concern in the United States and using hair to identify marijuana users and abusers has been gaining acceptance in a number of venues including workplace, court ordered, and substance abuse treatment monitoring. After the presentation of a fully validated 2-dimensional gas chromatography-tandem mass spectrometry method for the detection of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCA), the chief metabolite of the main psychoactive compound in marijuana, Δ9-tetrahydrocannabinol (THC), we evaluated the usefulness of fingernail clippings as an alternative specimen type to hair by the analysis of a set of 60 matched pairs of head hair and fingernail clippings. The limit of detection was 10 fg/mg, the limit of quantitation was 20 fg/mg, and the assay was linear from 20 fg/mg to 500 fg/mg. The intra- and inter-assay imprecision and bias studies at 4 different concentrations (50, 100, 500, and 1000 fg/mg) were acceptable where all % Target observations were within 16% of their expected concentrations and all %CV calculations were less than 13.5%. THCA was detectable in more fingernail specimens (53.3%) than hair specimens (46.7%) and the mean concentrations in nails were on average 4.9 times higher than in hair (1813 fg/mg and 364 fg/mg, respectively). The THCA concentrations in hair and nail were strongly associated (r = 0.974, P < 0.01, n = 60) and the association was significant. The study demonstrated that fingernail clippings are a suitable alternative specimen type to hair to monitor for marijuana use and abuse.
基金Supported by the National Key Scientific and Technological Project of China(No.2009ZX09502-012)the Research Fund for the Doctoral Program of Higher Education of China(No.20090101110126)the Zhejiang Province Science and Technology Plan Project,China(No.2008C23065)
文摘In order to identify the potential nephrotoxic compounds in traditional Chinese medicine Lithospermum erythrorhizon,it was separated into serial fractions according to their polarities.An in vitro method was utilized to determine the nephrotoxicity of these fractions with the help of fluorescence image analysis.As a result,the primary fraction A05 and its secondary fractions C06 "C09 and C12 "C14 were found to have significant toxicity to LLC-PK1 cell line,as determined by the survive rate less than 20% after they were treated with these fractions.These potential nephrotoxic fractions were further analyzed by multistage and high resolution mass spectrometry.The main compounds in these fractions were tentatively identified to be acetylshikonin,isobutyrylshikonin,β,β'-dimethyla-cryloylshikonin,and isovalerylshikonin,which may bring nephrotoxicity.
文摘Although the eminent threat of a terrorist group detonating an improvised nuclear device (IND) in an urban environment is low, it is crucial that countries develop modern nuclear forensic capabilities to expedite response in a post-detonation scenario. In particular, new instruments need to be created to shorten dissolution time, expedite chemical separation, and improve forensic analysis of the nuclear melt glass that is created during the detonation of the device. To expedite this process, an instrument was designed to thermally couple a gas chromatograph (GC) to a time-of-flight inductively coupled plasma time-of-flight mass spectrometer (ICPTOFMS) In order to couple these two instruments, another instrument was designed to provide an isothermal atmosphere between the GC and TOFICPMS to expedite rapid gas separations processes. By using gas separations instead of the current wet chemistry processes, the required separation and analysis time of the melt glass significantly decreases. The new instrument would also provide a more detailed analysis of the elemental and isotopic composition of the melt glass. By completing these tasks simultaneously, this significantly decreases the required time to conduct these separations and improves the elemental and isotopic analysis.
文摘Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively inert, causing no irritation and allergies. Poly(ethylene oxide)(PEO) hydrogels were prepared using pentaerythritol tetra-acrylate(PETRA) as UV crosslinking agent. A simple, accurate, and robust quantitation method was developed based on gas chromatographic techniques(GC), which is suitable for routine analysis of residual PETRA monomers in these hydrogels. Unreacted PETRA was initially identified using gas chromatography–mass spectrometry(GC–MS). The quantitation of analyte was performed and validated using gas chromatography equipped with a flame ionization detector(GC–FID). A linear relationship was obtained over the range of 0.0002%–0.0450%(m/m) with a correlation coefficient(r2)greater than 0.99. The recovery( 4 90%), intra-day precision(%RSD o 0.67), inter-day precision(%RSD o2.5%), and robustness(%RSD o1.62%) of the method were within the acceptable values. The limit of detection(LOD) and limit of quantitation(LOQ) were 0.0001%(m/m) and 0.0002%(m/m), respectively.This assay provides a simple and quick way of screening for residual acrylate monomer in hydrogels.
基金sponsored by the Science and Technology Management Department of China National Petroleum Corporation
文摘Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry(GC×GC-TOFMS) is commercially available in the 1990s,with the characteristics of large peak capacity,high resolution,high sensitivity,etc.However,its application to the petroleum and geological analyses is just emerging in China and overseas.In this research,the analytical method for petroleum aromatic fraction using GC×GC-TOFMS is set up,via the choice of the column system and optimization of setting parameters,such as temperature programming,modulation time,hot pulse time,flow rate of carrier gas,data acquisition rate and data processing.The results indicate that different polar compounds of aromatic fraction distribute as bands on structured GC×GC chromatogram.Within each band,homologous compounds appear as a roof-tile structure based on the number of substituent residues.The aromatic compounds are identified and characterized according to the GC×GC chromatogram and mass spectra.According to the polarity and the number of rings,aromatic compounds are spatially present on one chromatogram,which directly reflects the distribution characteristics of complex compounds of aromatic hydrocarbons.In addition,quantitative analysis is favored as some overlapped peaks on traditional GC-MS chromatogram have been separated completely on GC×GC.Some heterocyclic atom aromatic compounds at trace level can be clearly identified using this method,for polarity differences from other interfered aromatic compounds.The development of this method and chromatogram recognition offer petroleum geologists a practical example for the application performance of GC×GC-TOFMS.
基金supported by the Science and Technology Management Department of China National Petroleum Corporation (Grant No. 2008A-0603)
文摘The saturated and aromatic hydrocarbon fractions of crude oil samples have been analyzed by using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and conventional gas chro- matography-mass spectrometry (GC-MS). In order to investigate the consistency and discrepancy of the obtained data from the two instruments, some petroleum geochemical parameters have been compared. A comparison of 23 geochemical parameters indicates that 10 parameters are comparable from the two instruments with less than 5% deviations. Therefore, GCxGC-TOFMS is equivalent to conventional GC-MS in some geochemical parameter acquisitions. However, the other 13 parameters are discrepant, including gammacerane / αβ-hopane, Ts/Tm, 2-ethyl-naphthalene / 1-ethyl-naphthalene (ENR), (2, 6-dimethyl-naphthalene +2,7-dimethyl-naphthalene) / 1,5-dimethyl-naphthalene (DNR), etc. Furthermore, compared to GCxGC-TOFMS, some low concentration compounds could not be detected by the conventional GC-MS, which results in the missing of related geochemical data. Normally, this is caused by the limited separation power and peak capacity of the conventional GC column. Besides, the co-eluting peak integrations are also affected significantly due to the incomplete separation of the compounds. Some low concentration compounds might not be detected because of the interference from the baseline noise or from other substances. GCxGC-TOFMS prevails in compound separation against the conventional GC-MS by avoiding co-elution, which achieves more accurate and precise peak area measurement with the presence of a true baseline. So petroleum geochemical parameters obtained from the GCxGC-TOFMS GCxGC-TOFMS may become one of the most effective analytical are more reliable than those from the conventional GC-MS tools for the oil and gas geochemical study.
基金Supported by Research Council of Norway,NO.70174300
文摘Metabolomics is a field of study in systems biology that involves the identification and quantification of metabolites present in a biological system. Analyzing metabolic differences between unperturbed and perturbed networks, such as cancerous and noncancerous samples, can provide insight into underlying disease pathology, disease prognosis and diagnosis. Despite the large number of review articles concerning metabolomics and its application in cancer research, biomarker and drug discovery, these reviews do not focus on a specific type of cancer. Metabolomics may provide biomarkers useful for identification of early stage gastric cancer, potentially addressing an important clinical need. Here, we present a short review on metabolomics as a tool for biomarker discovery in human gastric cancer, with a primary focus on its use as a predictor of anticancer drug chemosensitivity, diagnosis, prognosis, and metastasis.
基金Supported by The Key Program of Science and Technology Commission of Shanghai Municipality,Project No.09JC1411600Natural Science Foundation of Shanghai,No.08ZR1411300
文摘AIM:To gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic values to predict tumor metastasis.METHODS:Human gastric cancer SGC-7901 cells were implanted into 24 severe combined immune deficiency (SCID) mice,which were randomly divided into metastasis group (n=8),non-metastasis group (n=8),and normal group (n=8).Urinary metabolomic information was obtained by gas chromatography/mass spectrometry (GC/MS).RESULTS:There were significant metabolic differences among the three groups (t test,P < 0.05).Ten selected metabolites were different between normal and cancer groups (non-metastasis and metastasis groups),and seven metabolites were also different between non-metastasis and metastasis groups.Two diagnostic models for gastric cancer and metastasis were constructed respectively by the principal component analysis (PCA).These PCA models were confirmed by corresponding receiver operating characteristic analysis (area under the curve=1.00).CONCLUSION:The urinary metabolomic profile is different,and the selected metabolites might be instructive to clinical diagnosis or screening metastasis for gastric cancer.