The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative...The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations.展开更多
Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at consta...Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results.展开更多
Rural area in Indonesia of which electrification ratio is still low has a strong demand for off-grid electric power supply. On the other hand, Indonesia is a leading natural rubber production country and these rubber ...Rural area in Indonesia of which electrification ratio is still low has a strong demand for off-grid electric power supply. On the other hand, Indonesia is a leading natural rubber production country and these rubber wood trees are cultivated in vast plantation farms. A rubber wood tree is woody biomass resource which can be stably supplied because a lot of trees aged more than 25 years are logged and nursery trees are planted constantly. Woody biomass is burned directly as solid fuel and the generated thermal energy can be applied only for room heating or cooking. Otherwise, direct conversion of biomass to electric energy requires a large scale equipment such as a boiler and a steam turbine, whereas gasified woody biomass can be easily handled and can have wide application. A closed gasifier chamber which was kept vacuum and fulfilled with gas yield during gasification was recently developed by the authors for indirect gasification. It was confirmed that generated gas by the gasifier is clean and can be directly used to drive an engine generator to supply electricity. In this study, planer dust of rubber wood is used as gasification feedstock for indirect gasifying in the closed gasifier chamber, and effects of heating temperature and moisture content on gasification performance are discussed to examine characteristics of the closed gasifier chamber in details.展开更多
To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a meth...To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases.展开更多
Targeting the problem of large amounts of gas emission from the goaf of the No.14201 working face in the Shaqu coal mine of Huajin Coking Coal Co. Ltd., we used a negative exponential function to describe the attenuat...Targeting the problem of large amounts of gas emission from the goaf of the No.14201 working face in the Shaqu coal mine of Huajin Coking Coal Co. Ltd., we used a negative exponential function to describe the attenuation process of gas emission in goaf (the stable source) based on the principle of field flow. Equations of two-component flow (gas and air) and seep- age-diffusion in a heterogeneous goaf flow field are solved by means of numerical simulation and fluid mechanics principles of air movement and gas distribution during gas emission from goaf. The results indicate that the air diversion volume has a negative, exponential relation with the volume of gas emitted from goaf to the working face and is clearly inversely related to gas concentra- tion. We calculated the minimum amount of air diversion and distributed air volume in the tailing roadway required for safe pro- duction.展开更多
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe...Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference.展开更多
Ammonia as a new green carbon free fuel co-combustion with coal can effectively reduce CO_(2)emission,but the research of flame morphology and characteristics of ammonia-coal co-combustion are not enough.In this work,...Ammonia as a new green carbon free fuel co-combustion with coal can effectively reduce CO_(2)emission,but the research of flame morphology and characteristics of ammonia-coal co-combustion are not enough.In this work,we studied the co-combustion flame of NH_(3)and pulverized coal on flat flame burner under different oxygen mole fraction(X_(i,O_(2)))and NH_(3)co-firing energy ratios(E_(NH_(3))).We initially observed that the introduction of ammonia resulted in stratification within the ammonia-coal co-combustion flame,featuring a transparent flame at the root identified as the ammonia combustion zone.Due to challenges in visually observing the ignition of coal particles in the ammonia-coal co-combustion flame,we utilized Matlab software to analyze flame images across varying E_(NH_(3))and X_(i,O_(2)).The analysis indicates that,compared to pure coal combustion,the addition of ammonia advances the ignition delay time by 4.21 ms to 5.94 ms.As E_(NH_(3))increases,the ignition delay time initially decreases and then increases.Simultaneously,an increase in X_(i,O_(2))results in an earlier ignition delay time.The burn-off time and the flame divergence angle of pulverized coal demonstrated linear decreases and increases,respectively,with the growing ammonia ratio.The addition of ammonia facilitates the release of volatile matter from coal particles.However,in high-ammonia environments,oxygen consumption also impedes the surface reaction of coal particles.Finally,measurements of gas composition in the ammonia-coal flame flow field unveiled that the generated water-rich atmosphere intensified coal particle gasification,resulting in an elevated concentration of CO.Simultaneously,nitrogen-containing substances and coke produced during coal particle gasification underwent reduction reactions with NO_(x),leading to reduced NO_(x)emissions.展开更多
Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the inf...Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22℃. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.展开更多
Through analysis of components and carbon isotope compositions of gas desorbed from shale cores,the carbon isotope reversal phenomenon in the shale gas from the Silurian Longmaxi Formation of Jiaoshiba area in Sichuan...Through analysis of components and carbon isotope compositions of gas desorbed from shale cores,the carbon isotope reversal phenomenon in the shale gas from the Silurian Longmaxi Formation of Jiaoshiba area in Sichuan Basin were well studied.Results showed that compared with the wellhead gas,the desorbed gas from Longmaxi shale had significantly more wet components and more heavy carbon isotope values;carbon isotope values of each component became heavier with the desorption time,δ^(13)C_(1)values of different samples had maximum positive variations of 12.3-23.9‰,butδ^(13)C_(2)values only had maximum positive variations of 0.8e2.3‰,indicating carbon isotope values of methane changed more obviously than that of heavy hydrocarbon.The above results were consistent with previous results of shale core desorption experiments carried out by other researchers.Shale gas in strata might have no carbon isotope reversal,and the phenomenon thatδ^(13)C_(1)values changed more significantly thanδ^(13)C_(2)values during the core desorption was not caused by diffusion rate differences among different components,but mainly due to different desorption stages of methane and ethane,i.e.,the ethane was in its early desorption stage while the methane was in its later desorption stage;during the production process,phase differences among different components of alkane gas and differences in the desorption stages induced by adsorption,could be the major cause for total reversal of carbon isotopes of shale gas in Longmaxi Formation,but it also could not excluded that mixture of kerogen cracking gas and crude oil cracking gas probably had a partial or more major contribution to the carbon isotope reversal.展开更多
Ce and Mn modified TiO_(2) sorbents(CeMnTi) were prepared by a co-precipitation method,and their ability to remove elemental mercury from coal gas in a fixed bed reactor was studied.Based on results of Brunauer-Emmett...Ce and Mn modified TiO_(2) sorbents(CeMnTi) were prepared by a co-precipitation method,and their ability to remove elemental mercury from coal gas in a fixed bed reactor was studied.Based on results of Brunauer-Emmett-Teller(BET),X-ray diffraction(XRD),scanning electron microscope(SEM),and X-ray photoelectron spectroscopy(XPS) studies,the modification mechanisms of the CeMnTi sorbents are discussed.Mn doping improved the specific surface area and dispersion of cerium oxides on the sorbent surface,while Ce doping increased the proportion of Mn^(4+)in manganese oxides by a synergetic effect between manganese oxides and cerium oxides.The effects of the active component,temperature,and coal gas components on the mercury removal performance of the sorbents were investigated.The results showed that the CeMnTi sorbents exhibited high mercury removal efficiency.Ce_(0.2)Mn_(0.1)Ti adsorbed 91.55% elemental mercury from coal gas at 160℃.H2 S and O2 significantly improved the ability of sorbents to remove mercury.Part of the H2_(S) formed stable sulfates or sulfites through a series of oxidation reaction chains on the sorbent surface.HCl also improved the mercury removal performance,but reduced the promotion effect of H2_(S) for mercury removal when coexisting with H2_(S).CO and H2 had a minor inhibitory effect on mercury adsorption.The recycling performance of the sorbents was investigated by thermal regeneration.The thermal decomposition of the used sorbents indicated that mercury compounds were present mainly in the form of HgO and HgS,and higher temperature was beneficial for regeneration.The formation of sulfates and sulfites in the presence of H2_(S) led to a decrease in mercury removal efficiency.展开更多
The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single ...The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the devel- oped model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions ofpretreated MSW.展开更多
Mercury emission has become a great environmental concern because of its high toxicity,bioaccumulation,and persistence.Adsorption is an effective method to remove Hg^(0)from coal-fired flue gas,with adsorbents playing...Mercury emission has become a great environmental concern because of its high toxicity,bioaccumulation,and persistence.Adsorption is an effective method to remove Hg^(0)from coal-fired flue gas,with adsorbents playing a dominant role.Extensive investigations have been conducted on the use of CuO-based materials for Hg^(0)removal,and some fruitful results have been obtained.In this review,we summarize advances in the application of CuO-based materials for Hg^(0)capture.Firstly,the fundamentals of CuO,including its crystal information and synthesis methods,are introduced.Then,the Hg^(0)removal capability of some typical CuO-based adsorbents is discussed.Considering that coal-fired flue gas also contains a certain amount of NO,SO_(2),H_(2)O,NH_(3),and HCl,the impacts of these species on adsorbent Hg^(0)removal efficiency are summarized next.By generalizing the mechanisms dominating the Hg^(0)removal process,the rate-determining step and the key intermediates can be discovered.Apart from Hg^(0),some other air pollutants,such as CO,NOx,and volatile organic compounds(VOCs),account for a certain portion of flue gas.In view of their similar abatement mechanisms,simultaneous removal of Hg^(0)and other air pollutants has become a hot topic in the environmental field.Considering the Hg^(0)re-emission phenomena in wet flue gas desulfurization(WFGD),mercury capture performance under different conditions in this device is discussed.Finally,we conclude that new adsorbents suitable for long-term operation in coal-fired flue gas should be developed to realize the effective reduction of mercury emissions.展开更多
基金supported by China Scholarship Council(202006430006)the International Postgraduate Tuition Award(IPTA)of the University of Wollongongthe research funding provided by the Mine A,ACARP Project C35015 and Coal Services Health and Safety Trust.
文摘The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations.
基金financially supported by the Natural Science Foundation for the Youth of China (No. 41202118)the Fundamental Research Funds for the Central Universities (No.2012QNB03)
文摘Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results.
文摘Rural area in Indonesia of which electrification ratio is still low has a strong demand for off-grid electric power supply. On the other hand, Indonesia is a leading natural rubber production country and these rubber wood trees are cultivated in vast plantation farms. A rubber wood tree is woody biomass resource which can be stably supplied because a lot of trees aged more than 25 years are logged and nursery trees are planted constantly. Woody biomass is burned directly as solid fuel and the generated thermal energy can be applied only for room heating or cooking. Otherwise, direct conversion of biomass to electric energy requires a large scale equipment such as a boiler and a steam turbine, whereas gasified woody biomass can be easily handled and can have wide application. A closed gasifier chamber which was kept vacuum and fulfilled with gas yield during gasification was recently developed by the authors for indirect gasification. It was confirmed that generated gas by the gasifier is clean and can be directly used to drive an engine generator to supply electricity. In this study, planer dust of rubber wood is used as gasification feedstock for indirect gasifying in the closed gasifier chamber, and effects of heating temperature and moisture content on gasification performance are discussed to examine characteristics of the closed gasifier chamber in details.
基金Supported by the Natural Science Foundation of Liaoning Province, China (20052193) and Ph.D. Programs Foundation of Ministry of Education o f China (20070141045).
文摘To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases.
基金Project 50574038 supported by the National Natural Science Foundation of China
文摘Targeting the problem of large amounts of gas emission from the goaf of the No.14201 working face in the Shaqu coal mine of Huajin Coking Coal Co. Ltd., we used a negative exponential function to describe the attenuation process of gas emission in goaf (the stable source) based on the principle of field flow. Equations of two-component flow (gas and air) and seep- age-diffusion in a heterogeneous goaf flow field are solved by means of numerical simulation and fluid mechanics principles of air movement and gas distribution during gas emission from goaf. The results indicate that the air diversion volume has a negative, exponential relation with the volume of gas emitted from goaf to the working face and is clearly inversely related to gas concentra- tion. We calculated the minimum amount of air diversion and distributed air volume in the tailing roadway required for safe pro- duction.
文摘Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference.
基金supported by the Technology Innovation and Entrepreneurship Fund Key Project of Tiandi Technology Co.,Ltd.(2021-TD-ZD005)。
文摘Ammonia as a new green carbon free fuel co-combustion with coal can effectively reduce CO_(2)emission,but the research of flame morphology and characteristics of ammonia-coal co-combustion are not enough.In this work,we studied the co-combustion flame of NH_(3)and pulverized coal on flat flame burner under different oxygen mole fraction(X_(i,O_(2)))and NH_(3)co-firing energy ratios(E_(NH_(3))).We initially observed that the introduction of ammonia resulted in stratification within the ammonia-coal co-combustion flame,featuring a transparent flame at the root identified as the ammonia combustion zone.Due to challenges in visually observing the ignition of coal particles in the ammonia-coal co-combustion flame,we utilized Matlab software to analyze flame images across varying E_(NH_(3))and X_(i,O_(2)).The analysis indicates that,compared to pure coal combustion,the addition of ammonia advances the ignition delay time by 4.21 ms to 5.94 ms.As E_(NH_(3))increases,the ignition delay time initially decreases and then increases.Simultaneously,an increase in X_(i,O_(2))results in an earlier ignition delay time.The burn-off time and the flame divergence angle of pulverized coal demonstrated linear decreases and increases,respectively,with the growing ammonia ratio.The addition of ammonia facilitates the release of volatile matter from coal particles.However,in high-ammonia environments,oxygen consumption also impedes the surface reaction of coal particles.Finally,measurements of gas composition in the ammonia-coal flame flow field unveiled that the generated water-rich atmosphere intensified coal particle gasification,resulting in an elevated concentration of CO.Simultaneously,nitrogen-containing substances and coke produced during coal particle gasification underwent reduction reactions with NO_(x),leading to reduced NO_(x)emissions.
文摘Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22℃. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.
基金This study was supported by the project of"Formation conditions and favorable zone evaluation of shale gas in the Lower Paleozoic of Sichuan Basin and its peripheral blocks"of Sinopec Science and Technology Division(No.P13129).
文摘Through analysis of components and carbon isotope compositions of gas desorbed from shale cores,the carbon isotope reversal phenomenon in the shale gas from the Silurian Longmaxi Formation of Jiaoshiba area in Sichuan Basin were well studied.Results showed that compared with the wellhead gas,the desorbed gas from Longmaxi shale had significantly more wet components and more heavy carbon isotope values;carbon isotope values of each component became heavier with the desorption time,δ^(13)C_(1)values of different samples had maximum positive variations of 12.3-23.9‰,butδ^(13)C_(2)values only had maximum positive variations of 0.8e2.3‰,indicating carbon isotope values of methane changed more obviously than that of heavy hydrocarbon.The above results were consistent with previous results of shale core desorption experiments carried out by other researchers.Shale gas in strata might have no carbon isotope reversal,and the phenomenon thatδ^(13)C_(1)values changed more significantly thanδ^(13)C_(2)values during the core desorption was not caused by diffusion rate differences among different components,but mainly due to different desorption stages of methane and ethane,i.e.,the ethane was in its early desorption stage while the methane was in its later desorption stage;during the production process,phase differences among different components of alkane gas and differences in the desorption stages induced by adsorption,could be the major cause for total reversal of carbon isotopes of shale gas in Longmaxi Formation,but it also could not excluded that mixture of kerogen cracking gas and crude oil cracking gas probably had a partial or more major contribution to the carbon isotope reversal.
基金Project supported by the National Natural Science Foundation of China (No. 51576173)。
文摘Ce and Mn modified TiO_(2) sorbents(CeMnTi) were prepared by a co-precipitation method,and their ability to remove elemental mercury from coal gas in a fixed bed reactor was studied.Based on results of Brunauer-Emmett-Teller(BET),X-ray diffraction(XRD),scanning electron microscope(SEM),and X-ray photoelectron spectroscopy(XPS) studies,the modification mechanisms of the CeMnTi sorbents are discussed.Mn doping improved the specific surface area and dispersion of cerium oxides on the sorbent surface,while Ce doping increased the proportion of Mn^(4+)in manganese oxides by a synergetic effect between manganese oxides and cerium oxides.The effects of the active component,temperature,and coal gas components on the mercury removal performance of the sorbents were investigated.The results showed that the CeMnTi sorbents exhibited high mercury removal efficiency.Ce_(0.2)Mn_(0.1)Ti adsorbed 91.55% elemental mercury from coal gas at 160℃.H2 S and O2 significantly improved the ability of sorbents to remove mercury.Part of the H2_(S) formed stable sulfates or sulfites through a series of oxidation reaction chains on the sorbent surface.HCl also improved the mercury removal performance,but reduced the promotion effect of H2_(S) for mercury removal when coexisting with H2_(S).CO and H2 had a minor inhibitory effect on mercury adsorption.The recycling performance of the sorbents was investigated by thermal regeneration.The thermal decomposition of the used sorbents indicated that mercury compounds were present mainly in the form of HgO and HgS,and higher temperature was beneficial for regeneration.The formation of sulfates and sulfites in the presence of H2_(S) led to a decrease in mercury removal efficiency.
文摘The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the devel- oped model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions ofpretreated MSW.
基金This work is supported by the Scientific Research Foundation of China Jiliang Universitythe Zhejiang Provincial Natural Science Foundation of China(Nos.LQ22E060003 and LY22E040001).
文摘Mercury emission has become a great environmental concern because of its high toxicity,bioaccumulation,and persistence.Adsorption is an effective method to remove Hg^(0)from coal-fired flue gas,with adsorbents playing a dominant role.Extensive investigations have been conducted on the use of CuO-based materials for Hg^(0)removal,and some fruitful results have been obtained.In this review,we summarize advances in the application of CuO-based materials for Hg^(0)capture.Firstly,the fundamentals of CuO,including its crystal information and synthesis methods,are introduced.Then,the Hg^(0)removal capability of some typical CuO-based adsorbents is discussed.Considering that coal-fired flue gas also contains a certain amount of NO,SO_(2),H_(2)O,NH_(3),and HCl,the impacts of these species on adsorbent Hg^(0)removal efficiency are summarized next.By generalizing the mechanisms dominating the Hg^(0)removal process,the rate-determining step and the key intermediates can be discovered.Apart from Hg^(0),some other air pollutants,such as CO,NOx,and volatile organic compounds(VOCs),account for a certain portion of flue gas.In view of their similar abatement mechanisms,simultaneous removal of Hg^(0)and other air pollutants has become a hot topic in the environmental field.Considering the Hg^(0)re-emission phenomena in wet flue gas desulfurization(WFGD),mercury capture performance under different conditions in this device is discussed.Finally,we conclude that new adsorbents suitable for long-term operation in coal-fired flue gas should be developed to realize the effective reduction of mercury emissions.