期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
China Has Successfully Conducted its First Pilot Production of Natural Gas Hydrates 被引量:4
1
作者 HAO Ziguo FEI Hongcai +1 位作者 HAO Qingqing LIU Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期1133-1134,共2页
Natural gas methane and hydrates are a chemical compound of water molecules formed under low temperature and high pressure. The decomposition of 1 m^3 of natural gas hydrates can release about 0.8 m^3 of water and 164... Natural gas methane and hydrates are a chemical compound of water molecules formed under low temperature and high pressure. The decomposition of 1 m^3 of natural gas hydrates can release about 0.8 m^3 of water and 164 m3 of natural gas. Thus, natural gas hydrates are characterized by their high-energy density and huge resource potential. It is estimated that the world's total natural gas hydrates resource amount is equivalent to twice the total carbon amount of the global proven conventional fuels and can meet the human energy requirement in the future for 1000 years. They are thus the first choice to replace conventional energy of petroleum and coal. 展开更多
关键词 of AS on China Has Successfully Conducted its First Pilot Production of Natural gas Hydrates in
下载PDF
Spatio-temporal variation in transpiration responses of maize plants to vapor pressure deficit under an arid climatic condition 被引量:4
2
作者 ZHAO Wenzhi JI Xibin 《Journal of Arid Land》 SCIE CSCD 2016年第3期409-421,共13页
The transpiration rate of plant is physically controlled by the magnitude of the vapor pressure deficit(VPD) and stomatal conductance. A limited-transpiration trait has been reported for many crop species in differe... The transpiration rate of plant is physically controlled by the magnitude of the vapor pressure deficit(VPD) and stomatal conductance. A limited-transpiration trait has been reported for many crop species in different environments, including Maize(Zea mays L.). This trait results in restricted transpiration rate under high VPD, and can potentially conserve soil water and thus decrease soil water deficit. However, such a restriction on transpiration rate has never been explored in maize under arid climatic conditions in northwestern China. The objective of this study was to examine the transpiration rate of field-grown maize under well-watered conditions in an arid area at both leaf and whole plant levels, and therefore to investigate how transpiration rate responding to the ambient VPD at different spatial and temporal scales. The transpiration rates of maize at leaf and plant scales were measured independently using a gas exchange system and sapflow instrument, respectively. Results showed significant variations in transpiration responses of maize to VPD among different spatio-temporal scales. A two-phase transpiration response was observed at leaf level with a threshold of 3.5 k Pa while at the whole plant level, the daytime transpiration rate was positively associated with VPD across all measurement data, as was nighttime transpiration response to VPD at both leaf and whole plant level, which showed no definable threshold vapor pressure deficit, above which transpiration rate was restricted. With regard to temporal scale, transpiration was most responsive to VPD at a daily scale, moderately responsive at a half-hourly scale, and least responsive at an instantaneous scale. A similar breakpoint(about 3.0 k Pa) in response of the instantaneous leaf stomatal conductance and hourly canopy bulk conductance to VPD were also observed. At a daily scale, the maximum canopy bulk conductance occurred at a VPD about 1.7 k Pa. Generally, the responsiveness of stomatal conductance to VPD at the canopy scale was lower than that at leaf scale. These results indicate a temporal and spatial heterogeneity in how maize transpiration responses to VPD under arid climatic conditions. This could allow a better assessment of the possible benefits of using the maximum transpiration trait to improve maize drought tolerance in arid environment, and allow a better prediction of plant transpiration which underpin empirical models for stomatal conductance at different spatio-temporal scales in the arid climatic conditions. 展开更多
关键词 maize limited transpiration trait gas exchange sap flow stomatal conductance vapor pressure deficit
下载PDF
Uncover the Aesthetic Simplicity Associated with Mass Transfer in Energy Materials
3
作者 Jiang-Wei Li Jia Li Ke-Chun Wen 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第1期21-24,共4页
Aesthetics,referred frequently to as a philosophical term,has played a starring role in forming and evolving a number of aspects of human society,including arts,politics,economics,ethics,etc.Indeed,exploring and inves... Aesthetics,referred frequently to as a philosophical term,has played a starring role in forming and evolving a number of aspects of human society,including arts,politics,economics,ethics,etc.Indeed,exploring and investigating the aesthetic phenomena in the scientific field have aroused insightful research findings,which in turn has stimulated research interests in such a science-aesthetics field.In particular,better-evaluated aesthetic aspects of the materials field are expected to be uncovered upon the exceedingly-exposed fundamental breakthroughs in researching the basic structure and functionality of materials.In this report,we glimpse into the aesthetic simplicity of energy materials and comprehend specifically the mass transfer functionalities of key categories of energy materials through an intuitive and bottom-up approach.Our effort aspires to shed new lights on the functionality understanding and manipulation of functional materials in general. 展开更多
关键词 Aesthetics applicability electrical conduction energy materials gas diffusion simplicity
下载PDF
Elaborate Architecture of the Hierarchical Hen's Eggshell 被引量:1
4
作者 Jie Zhou Shutao Wang +3 位作者 Fuqiang Nie Lin Feng Guangshan Zhu Lei Jiang 《Nano Research》 SCIE EI CAS CSCD 2011年第2期171-179,共9页
Eggshells are one of the most common and well-studied biomaterials in nature and exhibit unique properties of gas conduction. However, the morphologies of eggshells at the submicro-/nano-scale and their impact on eggs... Eggshells are one of the most common and well-studied biomaterials in nature and exhibit unique properties of gas conduction. However, the morphologies of eggshells at the submicro-/nano-scale and their impact on eggshell functions remain unclear. In this work, the architecture of hen's eggshell at different length scales has been systematically investigated by scanning electron microscopy (SEM) and environmental SEM (ESEM). It is found that the skeleton of calcium carbonate (CaCO3) has hierarchical structures at nano- to micro-scales: primary nano-particles of -10 Fain loosely congregate giving a porous and rough texture, and compose the upper-level morphologies including submicro spheres, nano-rods, rhombohedral-cleavage pattern and slices, which are elaborately arranged in a surface layer, palisade layer and mammillary layer along the radial direction. Accordingly, the pore system exhibits a three-level hierarchy, namely nano-scale pores (between nano-rods and primary nano-particles), submicro-scale pores ("bubble pores") and micro-scale pores (opening of "gas pores"). Further investigation shows that hen's eggshell regulates gas conduction through adjusting the sizes and numbers of submicro-scale "bubble pores". Based on our observations, a new description of hen's eggshell is presented, which amends the conventional view of micro-scale, straight and permeating "gas pores", and reveals the role of hierarchical pores in gas conduction and contamination resistance. 展开更多
关键词 EGGSHELL HIERARCHY MORPHOLOGY porous calcium carbonate gas conduction
原文传递
Recent developments of nanomaterials-based conductive type methane sensors 被引量:1
5
作者 Ming-Zhi Jiao Xiao-Yu Chen +3 位作者 Ke-Xiang Hu De-Yu Qian Xiao-Hu Zhao En-Jie Ding 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1515-1527,共13页
Methane is an explosive gas in coalmines and needs to be monitored by methane sensors.Conductivetype methane sensors are small,simple and stable,and they are very promising for mining safety or home safety application... Methane is an explosive gas in coalmines and needs to be monitored by methane sensors.Conductivetype methane sensors are small,simple and stable,and they are very promising for mining safety or home safety applications.They can even be employed in mining Internet of things if the power consumption can be lowered down to few milliwatts.Many researches of nanomaterialsbased conductive-type methane sensors have been reported recently.This review intends to present a comprehensive and critical summary on the recent progresses in the nanomaterials-based conductive-type methane sensors field.Many excellent methane-sensitive nanomaterials will be present,such as SnO2,ZnO,TiO2,WO3,carbon nanotubes,graphene,rare earth metal-based perovskite oxides and their hybrids.Particular attention is given to the synthetic methods of the nanomaterials,sensing mechanisms of the nanomaterials and the relationship between the sensing performance and the structures and components of the nanomaterials.Finally,the future trends and perspectives of nanomaterials-based conductive-type methane sensors are proposed. 展开更多
关键词 NANOMATERIALS Methane sensors Conductive gas sensors Sensing mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部