Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency cont...Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential.展开更多
BACKGROUND Laparoscopic-assisted radical gastrectomy(LARG)is the standard treatment for early-stage gastric carcinoma(GC).However,the negative impact of this proce-dure on respiratory function requires the optimized i...BACKGROUND Laparoscopic-assisted radical gastrectomy(LARG)is the standard treatment for early-stage gastric carcinoma(GC).However,the negative impact of this proce-dure on respiratory function requires the optimized intraoperative management of patients in terms of ventilation.AIM To investigate the influence of pressure-controlled ventilation volume-guaranteed(PCV-VG)and volume-controlled ventilation(VCV)on blood gas analysis and pulmonary ventilation in patients undergoing LARG for GC based on the lung ultrasound score(LUS).METHODS The study included 103 patients with GC undergoing LARG from May 2020 to May 2023,with 52 cases undergoing PCV-VG(research group)and 51 cases undergoing VCV(control group).LUS were recorded at the time of entering the operating room(T0),20 minutes after anesthesia with endotracheal intubation(T1),30 minutes after artificial pneumoperitoneum(PP)establishment(T2),and 15 minutes after endotracheal tube removal(T5).For blood gas analysis,arterial partial pressure of oxygen(PaO_(2))and partial pressure of carbon dioxide(PaCO_(2))were observed.Peak airway pressure(P_(peak)),plateau pressure(Pplat),mean airway pressure(P_(mean)),and dynamic pulmonary compliance(C_(dyn))were recorded at T1 and T2,1 hour after PP establishment(T3),and at the end of the operation(T4).Postoperative pulmonary complications(PPCs)were recorded.Pre-and postoperative serum interleukin(IL)-1β,IL-6,and tumor necrosis factor-α(TNF-α)were measured by enzyme-linked immunosorbent assay.RESULTS Compared with those at T0,the whole,anterior,lateral,posterior,upper,lower,left,and right lung LUS of the research group were significantly reduced at T1,T2,and T5;in the control group,the LUS of the whole and partial lung regions(posterior,lower,and right lung)decreased significantly at T2,while at T5,the LUS of the whole and some regions(lateral,lower,and left lung)increased significantly.In comparison with the control group,the whole and regional LUS of the research group were reduced at T1,T2,and T5,with an increase in PaO_(2),decrease in PaCO_(2),reduction in P_(peak) at T1 to T4,increase in P_(mean) and C_(dyn),and decrease in Pplat at T4,all significant.The research group showed a significantly lower incidence of PPCs than the control group within 3 days postoperatively.Postoperative IL-1β,IL-6,and TNF-αsignificantly increased in both groups,with even higher levels in the control group.CONCLUSION LUS can indicate intraoperative non-uniformity and postural changes in pulmonary ventilation under PCV-VG and VCV.Under the lung protective ventilation strategy,the PCV-VG mode more significantly improved intraop-erative lung ventilation in patients undergoing LARG for GC and reduced lung injury-related cytokine production,thereby alleviating lung injury.展开更多
The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not w...The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.展开更多
Objective To evaluate the clinical efficacy and safety of Zhenzhu Qingyuan Granules through a clinical randomized controlled trial and to analyze the potential action targets and pathways of this formula using network...Objective To evaluate the clinical efficacy and safety of Zhenzhu Qingyuan Granules through a clinical randomized controlled trial and to analyze the potential action targets and pathways of this formula using network pharmacology.Methods Patients with gastroesophageal reflux disease(GERD)of liver–stomach stagnant heat pattern who met the inclusion and exclusion criteria were randomly divided into the control group and the observation group.The control group received oral rabeprazole,whereas the observation group were given Zhenzhu Qingyuan Granules in addition to the rabeprazole.The treatment duration was 8 weeks.Clinical efficacy was observed in both groups after 8 weeks.Network pharmacology was used to analyze the action targets of ZhenzhuQingyuanGranules and the genes related to GERD,and core targets were inferred.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to explore the potential mechanisms of this formula.Results The clinical research results showed that the total effective rate in the treatment group was 92.68%,compared with 70.00%in the control group,with a statistically significant difference(p<0.05).After treatment,both Chinese medicine syndrome score and endoscopic score improved in both groups compared with before treatment(p<0.05),and the treatment group showed greater improvement than the control group(p<0.05).Network pharmacology identified effective components of Zhenzhu Qingyuan Granules for treating GERD,including quercetin,luteolin,andβ-sitosterol,with potential action targets such as tumor protein 53(TP53),protein kinase B(AKT1),and tumor necrosis factor.Conclusion Zhenzhu Qingyuan Granules can significantly improve clinical symptoms in patients with GERD of liver–stomach stagnated heat pattern,enhance clinical efficacy,and have high safety.This formula may exert therapeutic effects through multiple targets and pathways.展开更多
Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-a...Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an...In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation.展开更多
Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-e...Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
We discuss the feasibility of using controlled-source electromagnetic (CSEM) in the frequency domain for prospecting marine gas hydrates. Based on the Ocean Drilling Program (ODP) Leg 164 log data, we have establi...We discuss the feasibility of using controlled-source electromagnetic (CSEM) in the frequency domain for prospecting marine gas hydrates. Based on the Ocean Drilling Program (ODP) Leg 164 log data, we have established several 1-D resistivity models which have different gas hydrate concentrations. Meanwhile, we analyzed the electromagnetic response of marine gas hydrates in the frequency domain based on these models. We also studied the relationship between electrical field magnitude or phase and parameters such as receiver-transmitter distance and frequency. Our numerical modeling results provide us with a quantitative reference for exploration and resource evaluation of marine gas hydrates.展开更多
In this paper, gas control on EAST in open and closed loop is discussed and its implementation into EASTPCS (plasma control system for the experimental advanced supercon- ducting tokamak) is introduced. Using a mode...In this paper, gas control on EAST in open and closed loop is discussed and its implementation into EASTPCS (plasma control system for the experimental advanced supercon- ducting tokamak) is introduced. Using a model to describe the plasma density response to the gas puff command, a gas simulation server (simserver) using MATLAB simulink tools and real time workshop was built up. Proper operation of the gas control algorithm was verified using this simserver. The simulation results suggested that the gas control can be applied in the next EAST campaign.展开更多
The main geological factors controlling the accumulation and yield of marine-facies shale gas reservoirs are the focus of the current shale gas exploration and development research.In this study,the Wufeng-Longmaxi Fo...The main geological factors controlling the accumulation and yield of marine-facies shale gas reservoirs are the focus of the current shale gas exploration and development research.In this study,the Wufeng-Longmaxi Formation in the Dingshan area of southeast Sichuan was investigated.Shale cores underwent laboratory testing,which included the evaluation of total organic carbon(TOC),vitrinite reflectance(Ro),whole-rock X-ray diffraction(XRD),pore permeability,and imaging through field emission scanning electron microscopy(FE-SEM).Based on the results of natural gamma ray spectrum logging,conventional logging,imaging logging,and seismic coherence properties,the exploration and development potential of shale gas in the Dingshan area have been discussed comprehensively.The results showed that(1)layer No.4(WF2-LM4)of the Wufeng-Longmaxi Formation has a Th/U ratio<2 and a Th/K ratio of 3.5–12.Graptolites and pyrite are relatively abundant in the shale core,indicating sub-high-energy and low-energy marine-facies anoxic reducing environments.(2)The organic matter is mainly I-type kerogen with a small amount of II1-type kerogen.There is a good correlation among TOC,Ro,gas content,and brittle minerals;the fracturing property(brittleness)is 57.3%.Organic and inorganic pores are moderately developed.A higher pressure coefficient is correlated with the increase in porosity and the decrease in permeability.(3)The DY1 well of the shale gas reservoir was affected by natural defects and important latestage double destructive effects,and it is poorly preserved.The DY2 well is located far from the Qiyueshan Fault.Large faults are absent,and upward fractures in the Longmaxi Formation are poorly developed.The well is affected by low tectonic deformation intensity,and it is well preserved.(4)The Dingshan area is located at the junction of the two sedimentary centers of Jiaoshiba and Changning.The thickness of the high-quality shale interval(WF2-LM4)is relatively small,which may be an important reason for the unstable production of shale gas thus far.Based on the systematic analysis of the geological factors controlling high-yield shale gas enrichment in the Dingshan area,and the comparative analysis with the surrounding typical exploration areas,the geological understanding of marine shale gas enrichment in southern China has been improved.Therefore,this study can provide a useful reference for shale gas exploration and further development.展开更多
The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means o...The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.展开更多
Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the ...Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.展开更多
This work presents the design of a robust foam formulation that tolerates harsh reservoir conditions(high salinity,high divalent ion concentration,high temperature,light oil,and hydrocarbon injection gas)in a sandston...This work presents the design of a robust foam formulation that tolerates harsh reservoir conditions(high salinity,high divalent ion concentration,high temperature,light oil,and hydrocarbon injection gas)in a sandstone reservoir.For this,we selected anionic Alpha Olefin Sulfonate(AOS)surfactants and studied their synergistic effects in mixtures with zwitterionic betaines to enhance foam performance.The laboratory workflow used to define the best formulation followed a de-risking approach in three consecutive phases.First,(phase 1)the main surfactant(AOS)was selected among a series of commercial candidates in static conditions.Then,(phase 2)the betaine booster to be combined with the previously selected AOS was chosen and their ratio optimized in static conditions.Subsequently,(phase 3)the surfactant/booster ratio was optimized under dynamic conditions in a porous medium in the absence and the presence of oil.As a result of this study,a mixture of an AOS C14-C16 and cocamidopropyl hydroxysultaine(CAPHS)was selected as the one having the best performance.The designed formulation was proven to be robust in a wide range of conditions.It generated a strong and stable foam at reservoir conditions,overcoming variations in salinity and foam quality,and tolerated the presence of oil.展开更多
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
基金supported by Science and Technology Project of Jiangsu Frontier Electric Technology Co.,Ltd. (Grant Number KJ202004),Gao A.M. (author who received the grant).
文摘Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential.
文摘BACKGROUND Laparoscopic-assisted radical gastrectomy(LARG)is the standard treatment for early-stage gastric carcinoma(GC).However,the negative impact of this proce-dure on respiratory function requires the optimized intraoperative management of patients in terms of ventilation.AIM To investigate the influence of pressure-controlled ventilation volume-guaranteed(PCV-VG)and volume-controlled ventilation(VCV)on blood gas analysis and pulmonary ventilation in patients undergoing LARG for GC based on the lung ultrasound score(LUS).METHODS The study included 103 patients with GC undergoing LARG from May 2020 to May 2023,with 52 cases undergoing PCV-VG(research group)and 51 cases undergoing VCV(control group).LUS were recorded at the time of entering the operating room(T0),20 minutes after anesthesia with endotracheal intubation(T1),30 minutes after artificial pneumoperitoneum(PP)establishment(T2),and 15 minutes after endotracheal tube removal(T5).For blood gas analysis,arterial partial pressure of oxygen(PaO_(2))and partial pressure of carbon dioxide(PaCO_(2))were observed.Peak airway pressure(P_(peak)),plateau pressure(Pplat),mean airway pressure(P_(mean)),and dynamic pulmonary compliance(C_(dyn))were recorded at T1 and T2,1 hour after PP establishment(T3),and at the end of the operation(T4).Postoperative pulmonary complications(PPCs)were recorded.Pre-and postoperative serum interleukin(IL)-1β,IL-6,and tumor necrosis factor-α(TNF-α)were measured by enzyme-linked immunosorbent assay.RESULTS Compared with those at T0,the whole,anterior,lateral,posterior,upper,lower,left,and right lung LUS of the research group were significantly reduced at T1,T2,and T5;in the control group,the LUS of the whole and partial lung regions(posterior,lower,and right lung)decreased significantly at T2,while at T5,the LUS of the whole and some regions(lateral,lower,and left lung)increased significantly.In comparison with the control group,the whole and regional LUS of the research group were reduced at T1,T2,and T5,with an increase in PaO_(2),decrease in PaCO_(2),reduction in P_(peak) at T1 to T4,increase in P_(mean) and C_(dyn),and decrease in Pplat at T4,all significant.The research group showed a significantly lower incidence of PPCs than the control group within 3 days postoperatively.Postoperative IL-1β,IL-6,and TNF-αsignificantly increased in both groups,with even higher levels in the control group.CONCLUSION LUS can indicate intraoperative non-uniformity and postural changes in pulmonary ventilation under PCV-VG and VCV.Under the lung protective ventilation strategy,the PCV-VG mode more significantly improved intraop-erative lung ventilation in patients undergoing LARG for GC and reduced lung injury-related cytokine production,thereby alleviating lung injury.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42030804 and 42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Fundamental Research Funds for the Central UniversitiesGrant No.2652023001)。
文摘The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.
基金National Administration of Traditional Chinese Medicine Evidence-Based Capacity Building Project(2019XZZXXH005)Special Project on Traditional Chinese Medicine Scientific Research of Health Commission of Henan Province(2022ZY2022)+1 种基金Henan Provincial Top Talents Cultivation Project in Traditional Chinese Medicine Discipline of Henan Provincial Traditional Chinese Medicine Inheritance and Innovation Talents Project(Zhongjing Project)(Henan Health TraditionalMedicine Letter[2021]No.15)Special Project on Traditional Chinese Medicine Scientific Research of Health Commission of Henan Province(2023ZY2062).
文摘Objective To evaluate the clinical efficacy and safety of Zhenzhu Qingyuan Granules through a clinical randomized controlled trial and to analyze the potential action targets and pathways of this formula using network pharmacology.Methods Patients with gastroesophageal reflux disease(GERD)of liver–stomach stagnant heat pattern who met the inclusion and exclusion criteria were randomly divided into the control group and the observation group.The control group received oral rabeprazole,whereas the observation group were given Zhenzhu Qingyuan Granules in addition to the rabeprazole.The treatment duration was 8 weeks.Clinical efficacy was observed in both groups after 8 weeks.Network pharmacology was used to analyze the action targets of ZhenzhuQingyuanGranules and the genes related to GERD,and core targets were inferred.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to explore the potential mechanisms of this formula.Results The clinical research results showed that the total effective rate in the treatment group was 92.68%,compared with 70.00%in the control group,with a statistically significant difference(p<0.05).After treatment,both Chinese medicine syndrome score and endoscopic score improved in both groups compared with before treatment(p<0.05),and the treatment group showed greater improvement than the control group(p<0.05).Network pharmacology identified effective components of Zhenzhu Qingyuan Granules for treating GERD,including quercetin,luteolin,andβ-sitosterol,with potential action targets such as tumor protein 53(TP53),protein kinase B(AKT1),and tumor necrosis factor.Conclusion Zhenzhu Qingyuan Granules can significantly improve clinical symptoms in patients with GERD of liver–stomach stagnated heat pattern,enhance clinical efficacy,and have high safety.This formula may exert therapeutic effects through multiple targets and pathways.
文摘Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金supported by the National Natural Science Foundation of China(62373017,62073006)and the Beijing Natural Science Foundation of China(4212032)。
文摘In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation.
基金supported by the National Natural Science Foundation of China, Nos.81971151 (to YW), 82102528 (to XL), 82102583 (to LW)the Natural Science Foundation of Guangdong Province, China, Nos.2020A1515010265 (to YW), 2020A1515110679 (to XL), and 2021A1515010358 (to XL)
文摘Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金supported by the Program for New Century Excellent Talents in University(No.NCET-04-0370)
文摘We discuss the feasibility of using controlled-source electromagnetic (CSEM) in the frequency domain for prospecting marine gas hydrates. Based on the Ocean Drilling Program (ODP) Leg 164 log data, we have established several 1-D resistivity models which have different gas hydrate concentrations. Meanwhile, we analyzed the electromagnetic response of marine gas hydrates in the frequency domain based on these models. We also studied the relationship between electrical field magnitude or phase and parameters such as receiver-transmitter distance and frequency. Our numerical modeling results provide us with a quantitative reference for exploration and resource evaluation of marine gas hydrates.
基金supported by the Key Project of Knowledge Innovation Program of Chinese Academy of Sciences (No. KJCX3.SYW.N4)
文摘In this paper, gas control on EAST in open and closed loop is discussed and its implementation into EASTPCS (plasma control system for the experimental advanced supercon- ducting tokamak) is introduced. Using a model to describe the plasma density response to the gas puff command, a gas simulation server (simserver) using MATLAB simulink tools and real time workshop was built up. Proper operation of the gas control algorithm was verified using this simserver. The simulation results suggested that the gas control can be applied in the next EAST campaign.
基金The Open Fund (PLC20180404) of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)The Open Fund (PLN 201718) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)The Open Fund(SEC-2018-04)of Collaborative Innovation Center of Shale Gas Resources and Environment (Southwest Petroleum University)
文摘The main geological factors controlling the accumulation and yield of marine-facies shale gas reservoirs are the focus of the current shale gas exploration and development research.In this study,the Wufeng-Longmaxi Formation in the Dingshan area of southeast Sichuan was investigated.Shale cores underwent laboratory testing,which included the evaluation of total organic carbon(TOC),vitrinite reflectance(Ro),whole-rock X-ray diffraction(XRD),pore permeability,and imaging through field emission scanning electron microscopy(FE-SEM).Based on the results of natural gamma ray spectrum logging,conventional logging,imaging logging,and seismic coherence properties,the exploration and development potential of shale gas in the Dingshan area have been discussed comprehensively.The results showed that(1)layer No.4(WF2-LM4)of the Wufeng-Longmaxi Formation has a Th/U ratio<2 and a Th/K ratio of 3.5–12.Graptolites and pyrite are relatively abundant in the shale core,indicating sub-high-energy and low-energy marine-facies anoxic reducing environments.(2)The organic matter is mainly I-type kerogen with a small amount of II1-type kerogen.There is a good correlation among TOC,Ro,gas content,and brittle minerals;the fracturing property(brittleness)is 57.3%.Organic and inorganic pores are moderately developed.A higher pressure coefficient is correlated with the increase in porosity and the decrease in permeability.(3)The DY1 well of the shale gas reservoir was affected by natural defects and important latestage double destructive effects,and it is poorly preserved.The DY2 well is located far from the Qiyueshan Fault.Large faults are absent,and upward fractures in the Longmaxi Formation are poorly developed.The well is affected by low tectonic deformation intensity,and it is well preserved.(4)The Dingshan area is located at the junction of the two sedimentary centers of Jiaoshiba and Changning.The thickness of the high-quality shale interval(WF2-LM4)is relatively small,which may be an important reason for the unstable production of shale gas thus far.Based on the systematic analysis of the geological factors controlling high-yield shale gas enrichment in the Dingshan area,and the comparative analysis with the surrounding typical exploration areas,the geological understanding of marine shale gas enrichment in southern China has been improved.Therefore,this study can provide a useful reference for shale gas exploration and further development.
文摘The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.
文摘Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.
基金funded by the Centro para el Desarrollo Tecnologico Industrial(CDTI)of the Spanish Ministry of Science and Innovation(IDI-20170503)the Fundacion Cepsa with the Escuela Tecnica Superior de Ingenieros de Minas y Energia of the Universidad Politecnica de Madrid(UPM)。
文摘This work presents the design of a robust foam formulation that tolerates harsh reservoir conditions(high salinity,high divalent ion concentration,high temperature,light oil,and hydrocarbon injection gas)in a sandstone reservoir.For this,we selected anionic Alpha Olefin Sulfonate(AOS)surfactants and studied their synergistic effects in mixtures with zwitterionic betaines to enhance foam performance.The laboratory workflow used to define the best formulation followed a de-risking approach in three consecutive phases.First,(phase 1)the main surfactant(AOS)was selected among a series of commercial candidates in static conditions.Then,(phase 2)the betaine booster to be combined with the previously selected AOS was chosen and their ratio optimized in static conditions.Subsequently,(phase 3)the surfactant/booster ratio was optimized under dynamic conditions in a porous medium in the absence and the presence of oil.As a result of this study,a mixture of an AOS C14-C16 and cocamidopropyl hydroxysultaine(CAPHS)was selected as the one having the best performance.The designed formulation was proven to be robust in a wide range of conditions.It generated a strong and stable foam at reservoir conditions,overcoming variations in salinity and foam quality,and tolerated the presence of oil.