Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these ex...Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these experiments, the pressure varied from 0.1 MPa to 0.2 MPa, the voltage pulse peak applied to the switch was in the range from 40 kV to 78 kV, and the pulse rise time was 11 ns. The static breakdown strength of the gas switch gap in the switch was also measured. The results show that in general the average number of discharge channels for SF6-Ar or SF6-N2 gas mixture which contains less SFa is larger than that for gas mixture which contains more SF6, however, the average number of channels almost keeps constant as the gas mixing ratio varies when the pulse rise rate is high enough. The static breakdown strength of the gas switch gap decreases slightly as the content of argon or nitrogen increases.展开更多
Size effects and compositions constitute new properties for inorganic particles in different application fields.The physical method has recently attracted more attention in the preparation of inorganic materials.Herei...Size effects and compositions constitute new properties for inorganic particles in different application fields.The physical method has recently attracted more attention in the preparation of inorganic materials.Herein,a low-cost,eco-friendly,simple-operating,and time-saving technique,named electrical discharge,is reviewed in relation to developments from the nature of this technique in different dielectric media to the practical experience in controlling the main processing parameters,apparatuses,types of discharge,from the various structures and components to the wide applications.The development of the electrical discharge technique will play an important role in improving the technology to prepare superfine inorganic particles with high purity.Meanwhile,electrical discharge contributes to easily mixing solid materials from the atomic scale to several micrometers with different structures.Moreover,metal oxides or doping materials are accessible as the dielectric medium is changed.Considering some excellent advantages,new inorganic particles exploited through the electrical discharge method will promise to be the most rewarding in some potential applications.展开更多
基金supported by National Natural Science Foundation of China(No.51177132)
文摘Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these experiments, the pressure varied from 0.1 MPa to 0.2 MPa, the voltage pulse peak applied to the switch was in the range from 40 kV to 78 kV, and the pulse rise time was 11 ns. The static breakdown strength of the gas switch gap in the switch was also measured. The results show that in general the average number of discharge channels for SF6-Ar or SF6-N2 gas mixture which contains less SFa is larger than that for gas mixture which contains more SF6, however, the average number of channels almost keeps constant as the gas mixing ratio varies when the pulse rise rate is high enough. The static breakdown strength of the gas switch gap decreases slightly as the content of argon or nitrogen increases.
基金supported by the National Natural Science Foundation of China(Grant No.51972045)the Fundamental Research Funds for the Chinese Central Universities,China(Grant No.ZYGX2019J025)the Sichuan Science and Technology Program(Grant Nos.2020JDRC0015 and 2020JDRC0045).
文摘Size effects and compositions constitute new properties for inorganic particles in different application fields.The physical method has recently attracted more attention in the preparation of inorganic materials.Herein,a low-cost,eco-friendly,simple-operating,and time-saving technique,named electrical discharge,is reviewed in relation to developments from the nature of this technique in different dielectric media to the practical experience in controlling the main processing parameters,apparatuses,types of discharge,from the various structures and components to the wide applications.The development of the electrical discharge technique will play an important role in improving the technology to prepare superfine inorganic particles with high purity.Meanwhile,electrical discharge contributes to easily mixing solid materials from the atomic scale to several micrometers with different structures.Moreover,metal oxides or doping materials are accessible as the dielectric medium is changed.Considering some excellent advantages,new inorganic particles exploited through the electrical discharge method will promise to be the most rewarding in some potential applications.