Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracyclin...Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.展开更多
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications ...The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.展开更多
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a...Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.展开更多
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a...SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.展开更多
Targeting the problem of large amounts of gas emission from the goaf of the No.14201 working face in the Shaqu coal mine of Huajin Coking Coal Co. Ltd., we used a negative exponential function to describe the attenuat...Targeting the problem of large amounts of gas emission from the goaf of the No.14201 working face in the Shaqu coal mine of Huajin Coking Coal Co. Ltd., we used a negative exponential function to describe the attenuation process of gas emission in goaf (the stable source) based on the principle of field flow. Equations of two-component flow (gas and air) and seep- age-diffusion in a heterogeneous goaf flow field are solved by means of numerical simulation and fluid mechanics principles of air movement and gas distribution during gas emission from goaf. The results indicate that the air diversion volume has a negative, exponential relation with the volume of gas emitted from goaf to the working face and is clearly inversely related to gas concentra- tion. We calculated the minimum amount of air diversion and distributed air volume in the tailing roadway required for safe pro- duction.展开更多
The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficienc...The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.展开更多
The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed...The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.展开更多
Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and ...Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.展开更多
The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device (MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode an...The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device (MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode and the cathode of the MGDD are formed by a transparent SnO2 covered glass and a GaAs semiconductor, respectively. In the experiments, the discharge is found to be unstable just below the breakdown voltage Ub, whereas the discharge passes through a homo- geneous stable Townsend mode beyond the breakdown voltage. The measurements are made by an electrical circuit and a CCD camera by recording the currents and light emission (LE) intensities. The intensity profiles, which are converted from the 3D light emission images along the semiconductor diameter, have been analysed for different system parameters. Dif- ferent instantaneous conductivity ~t regimes are found below and beyond the Townsend region. These regimes govern the current and spatio-temporal LE stabilities in the plasma system. It has been proven that the stable LE region increases up to 550 Torr as a function of pressure for small d. If the active area of the semiconductor becomes larger and the interlectrode distance d becomes smaller, the stable LE region stays nearly constant with pressure.展开更多
After cumulative discharge of gas discharge tube(GDT),it is easy to form a short circuit pathway between the two electrodes,which increases the failure risk and causes severe influences on the protected object.To redu...After cumulative discharge of gas discharge tube(GDT),it is easy to form a short circuit pathway between the two electrodes,which increases the failure risk and causes severe influences on the protected object.To reduce the failure risk of GDT and improve cumulative discharge times before failure,this work aims to suppress the formation of two short-circuit pathways by optimizing the tube wall structure,the electrode materials and the electrode structure.A total of five improved GDT samples are designed by focusing on the insulation resistance change that occurs after the improvement;then,by combining these designs with the microscopic morphology changes inside the cavity and the differences in deposition composition,the reasons for the differences in the GDT failure risk are also analyzed.The experimental results show that compared with GDT of traditional structure and material,the method of adding grooves at both ends of the tube wall can effectively block the deposition pathway of the tube wall,and the cumulative discharge time before device failure is increased by 149%.On this basis,when the iron-nickel electrode is replaced with a tungsten-copper electrode,the difference in the electrode’s surface splash characteristics further extends the discharge time before failure by 183%.In addition,when compared with the traditional electrode structure,the method of adding an annular structure at the electrode edge to block the splashing pathway for the particles on the electrode surface shows no positive effect,and the cumulative discharge time before the failure of the two structures is reduced by 22.8%and 49.7%,respectively.Among these improved structures,the samples with grooves at both ends of the tube wall and tungsten-copper as their electrode material have the lowest failure risk.展开更多
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether(DME).A systemic procedure was employed to determine the suitable experimental conditions.It was found tha...Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether(DME).A systemic procedure was employed to determine the suitable experimental conditions.It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air.The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield,but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to76 ml·min 1.Larger electrode gap and higher discharge voltage were advantageous.Electrode shape had an important effect on the conversion of DME and production of H2.Among the five electrodes,electrode 2#with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option,which enhanced obviously the conversion of DME.展开更多
This article presents hydrodynamics simulation of multi-steady states and modetransition by DC-beam-injected gas discharge, and provides a model approach to hysteresis anddistinct forms of multi-steady states. The cri...This article presents hydrodynamics simulation of multi-steady states and modetransition by DC-beam-injected gas discharge, and provides a model approach to hysteresis anddistinct forms of multi-steady states. The critical transition conditions of the three discharge modes(temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to bedependent on the gas pressure and the filament temperature. Various forms of the multi-steadystates in gas discharge can be uniformly explained by the displacement of the mutant positions.The simulation results are in a good agreement with those of the experiments.展开更多
The article presents the results of an experimental study and numerical modelling for the formation and development dynamics of a high-voltage transverse nanosecond discharge generated by a slot cathode in an argon me...The article presents the results of an experimental study and numerical modelling for the formation and development dynamics of a high-voltage transverse nanosecond discharge generated by a slot cathode in an argon medium at a pressure range of 1–10 Torr. Numerical modelling was carried out under similar experimental conditions for the processes of formation and propagation of ionisation waves, electron density distribution, excited atom and average electron energy in the discharge gap, including the cavity inside the cathode. At a pressure of p=1 Torr, a classical version of a high-voltage discharge is demonstrated to take place with no penetration of the plasma into the cathode cavity and no observed hollow cathode effect. An increase in gas pressure to 5 Torr leads to a penetration of plasma into the cathode cavity with the formation of a cathodic potential drop(CPD) region. Electrons emitted from the side surfaces of the cavity pass through the CPD region without collisions, oscillate inside the cathode cavity;the hollow cathode effect is fully manifested. At р=10 Torr, the modelling results qualitatively coincide with the results at р=5 Torr;in this case, however, hardly any accelerated electrons are observed in the gap between the electrodes, due to their energetic relaxation both inside the cathode cavity and when exiting from it. In both cases, the plasma structure formed at the exit of the cathode cavity involves a concentration of charged particles an order of magnitude higher than that in the rest of the gap, leading to a self-limiting discharge current effect. The results of the numerical modelling are in good agreement with experimental data.展开更多
Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionizati...Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionization collision probability model.The function had three parameters:the first ionization potential energy,A_(α),and B_(α).A_(α)and B_(α)were related to the molecule symmetry and size.The polarization of molecules could characterize the molecule symmetry.The multi-layer molecular cross-section(MMCS)was proposed to describe the contributions of electrons and molecule radius on different molecule surfaces to collisions.A prediction model of the ionization cross-section was also proposed based on Aα.The molecule parameters were calculated by the Becke3–Lee–Yang–Parr(B3LYP)method and the 6–311G**basis set.We used available data of 30 and 23 gases,respectively,to build the prediction models of reduced Townsend ionization coefficients and ionization cross-sections.The relationships between the molecular parameters Aαand Bαand the ionization cross-section were built up via nonlinear fittings.The determination coefficients R^(2)of Aα,Bα,and the ionization cross-section were 0.877,0.887,and 0.838,respectively.The results showed that the accuracy of models was positively correlated with the molecule symmetry and reduced electric field.This was mainly related to the accuracy of the MMCS model in predicting Aα.The MMCS model needed to be improved to describe the collision direction selectivity caused by the molecule asymmetry.Under a high reduced electric field,that error of Aαhad less influence on the prediction results.However,the prediction results for single atoms with high symmetry were poor.This may be due to the absolute error of the model close to single atoms’reduced Townsend ionization coefficients.The models could provide the basis for gas insulation prediction and discharge calculations,especially for symmetric molecules under a high electric field.展开更多
This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribut...This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribution function(EEDF)of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied.The results show that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front splits into two parts in the cathode cavity while propagating along its lateral surfaces.The ionization front formation leads to an increase in the fast isotropic EEDF component at its front,as well as in the anisotropic EEDF component.The accelerated electrons enter the cathode cavity,which significantly contributes to the formation of the highenergy EEDF component and EEDF anisotropy.展开更多
Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the pr...Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.展开更多
In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas o...In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.展开更多
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive...Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.展开更多
A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-fie...A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.展开更多
Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the e...Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar-10% O2, 80% At-20% 02 and 0% Ar-100% 02. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ,-0.0115 S m^-1 up to -0.0430 S m^-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.展开更多
基金supported by the Key R&D Plan of Anhui Province(No.201904a07020013)Collaborative Innovation Program of Hefei Science Center,CAS(No.CX2140000018)the Funding for Joint Lab of Applied Plasma Technology(No.JL06120001H)。
文摘Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.
基金supported by National Natural Science Foundation of China (No. 12075132)。
文摘The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.
基金the National Natural Science Foun-dation of China(Grant Nos.12020101005,11975067,and 12347131)the Fundamental Research Funds for the Cen-tral Universities(Grant No.DUT24BS069).
文摘Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.
基金supported by Guizhou Province (Ceneral), grant/award number Qian Ke He Zhi Cheng [2022] General 207, National Natural Science Foundation of China (No. 52307170)Natural Science Foundation of Hubei Province, China (No. 2023AFB382)。
文摘SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.
基金Project 50574038 supported by the National Natural Science Foundation of China
文摘Targeting the problem of large amounts of gas emission from the goaf of the No.14201 working face in the Shaqu coal mine of Huajin Coking Coal Co. Ltd., we used a negative exponential function to describe the attenuation process of gas emission in goaf (the stable source) based on the principle of field flow. Equations of two-component flow (gas and air) and seep- age-diffusion in a heterogeneous goaf flow field are solved by means of numerical simulation and fluid mechanics principles of air movement and gas distribution during gas emission from goaf. The results indicate that the air diversion volume has a negative, exponential relation with the volume of gas emitted from goaf to the working face and is clearly inversely related to gas concentra- tion. We calculated the minimum amount of air diversion and distributed air volume in the tailing roadway required for safe pro- duction.
基金Project (No. 50476058) supported by the National Natural ScienceFoundation of China
文摘The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.
基金Sponsored by the Fund for the Doctoral Program of Higher Education (RFDP) (Grant No. CBQQ24403007)the Innovation Fund of HIT(Grant No.CBQQ18400018)
文摘The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.
文摘Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.
基金Project supported by Gazi University BAP Research Project, Turkey (Grant Nos. 05/2012-47 and 05/2012-72).
文摘The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device (MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode and the cathode of the MGDD are formed by a transparent SnO2 covered glass and a GaAs semiconductor, respectively. In the experiments, the discharge is found to be unstable just below the breakdown voltage Ub, whereas the discharge passes through a homo- geneous stable Townsend mode beyond the breakdown voltage. The measurements are made by an electrical circuit and a CCD camera by recording the currents and light emission (LE) intensities. The intensity profiles, which are converted from the 3D light emission images along the semiconductor diameter, have been analysed for different system parameters. Dif- ferent instantaneous conductivity ~t regimes are found below and beyond the Townsend region. These regimes govern the current and spatio-temporal LE stabilities in the plasma system. It has been proven that the stable LE region increases up to 550 Torr as a function of pressure for small d. If the active area of the semiconductor becomes larger and the interlectrode distance d becomes smaller, the stable LE region stays nearly constant with pressure.
基金supported by National Natural Science Foundation of China(No.U1834204)。
文摘After cumulative discharge of gas discharge tube(GDT),it is easy to form a short circuit pathway between the two electrodes,which increases the failure risk and causes severe influences on the protected object.To reduce the failure risk of GDT and improve cumulative discharge times before failure,this work aims to suppress the formation of two short-circuit pathways by optimizing the tube wall structure,the electrode materials and the electrode structure.A total of five improved GDT samples are designed by focusing on the insulation resistance change that occurs after the improvement;then,by combining these designs with the microscopic morphology changes inside the cavity and the differences in deposition composition,the reasons for the differences in the GDT failure risk are also analyzed.The experimental results show that compared with GDT of traditional structure and material,the method of adding grooves at both ends of the tube wall can effectively block the deposition pathway of the tube wall,and the cumulative discharge time before device failure is increased by 149%.On this basis,when the iron-nickel electrode is replaced with a tungsten-copper electrode,the difference in the electrode’s surface splash characteristics further extends the discharge time before failure by 183%.In addition,when compared with the traditional electrode structure,the method of adding an annular structure at the electrode edge to block the splashing pathway for the particles on the electrode surface shows no positive effect,and the cumulative discharge time before the failure of the two structures is reduced by 22.8%and 49.7%,respectively.Among these improved structures,the samples with grooves at both ends of the tube wall and tungsten-copper as their electrode material have the lowest failure risk.
基金Supported by the National Natural Science Foundation of China(21176175,20606023)
文摘Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether(DME).A systemic procedure was employed to determine the suitable experimental conditions.It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air.The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield,but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to76 ml·min 1.Larger electrode gap and higher discharge voltage were advantageous.Electrode shape had an important effect on the conversion of DME and production of H2.Among the five electrodes,electrode 2#with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option,which enhanced obviously the conversion of DME.
文摘This article presents hydrodynamics simulation of multi-steady states and modetransition by DC-beam-injected gas discharge, and provides a model approach to hysteresis anddistinct forms of multi-steady states. The critical transition conditions of the three discharge modes(temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to bedependent on the gas pressure and the filament temperature. Various forms of the multi-steadystates in gas discharge can be uniformly explained by the displacement of the mutant positions.The simulation results are in a good agreement with those of the experiments.
基金supported by a grant from the Russian Foundation for Basic Research No.19-32-90179 and state assignment FZNZ-2020-0002。
文摘The article presents the results of an experimental study and numerical modelling for the formation and development dynamics of a high-voltage transverse nanosecond discharge generated by a slot cathode in an argon medium at a pressure range of 1–10 Torr. Numerical modelling was carried out under similar experimental conditions for the processes of formation and propagation of ionisation waves, electron density distribution, excited atom and average electron energy in the discharge gap, including the cavity inside the cathode. At a pressure of p=1 Torr, a classical version of a high-voltage discharge is demonstrated to take place with no penetration of the plasma into the cathode cavity and no observed hollow cathode effect. An increase in gas pressure to 5 Torr leads to a penetration of plasma into the cathode cavity with the formation of a cathodic potential drop(CPD) region. Electrons emitted from the side surfaces of the cavity pass through the CPD region without collisions, oscillate inside the cathode cavity;the hollow cathode effect is fully manifested. At р=10 Torr, the modelling results qualitatively coincide with the results at р=5 Torr;in this case, however, hardly any accelerated electrons are observed in the gap between the electrodes, due to their energetic relaxation both inside the cathode cavity and when exiting from it. In both cases, the plasma structure formed at the exit of the cathode cavity involves a concentration of charged particles an order of magnitude higher than that in the rest of the gap, leading to a self-limiting discharge current effect. The results of the numerical modelling are in good agreement with experimental data.
基金supported by National Natural Science Foundation of China(No.U1966211)National Key R&D Program of China(No.2021YFB2401400)。
文摘Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionization collision probability model.The function had three parameters:the first ionization potential energy,A_(α),and B_(α).A_(α)and B_(α)were related to the molecule symmetry and size.The polarization of molecules could characterize the molecule symmetry.The multi-layer molecular cross-section(MMCS)was proposed to describe the contributions of electrons and molecule radius on different molecule surfaces to collisions.A prediction model of the ionization cross-section was also proposed based on Aα.The molecule parameters were calculated by the Becke3–Lee–Yang–Parr(B3LYP)method and the 6–311G**basis set.We used available data of 30 and 23 gases,respectively,to build the prediction models of reduced Townsend ionization coefficients and ionization cross-sections.The relationships between the molecular parameters Aαand Bαand the ionization cross-section were built up via nonlinear fittings.The determination coefficients R^(2)of Aα,Bα,and the ionization cross-section were 0.877,0.887,and 0.838,respectively.The results showed that the accuracy of models was positively correlated with the molecule symmetry and reduced electric field.This was mainly related to the accuracy of the MMCS model in predicting Aα.The MMCS model needed to be improved to describe the collision direction selectivity caused by the molecule asymmetry.Under a high reduced electric field,that error of Aαhad less influence on the prediction results.However,the prediction results for single atoms with high symmetry were poor.This may be due to the absolute error of the model close to single atoms’reduced Townsend ionization coefficients.The models could provide the basis for gas insulation prediction and discharge calculations,especially for symmetric molecules under a high electric field.
基金supported by the Russian Foundation for Basic Research(No.20–32–90150)by State Assignment(No.FZNZ–2020–0002)。
文摘This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribution function(EEDF)of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied.The results show that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front splits into two parts in the cathode cavity while propagating along its lateral surfaces.The ionization front formation leads to an increase in the fast isotropic EEDF component at its front,as well as in the anisotropic EEDF component.The accelerated electrons enter the cathode cavity,which significantly contributes to the formation of the highenergy EEDF component and EEDF anisotropy.
基金Project supported by the Funds for Innovative Research Groups of China (Grant No. 51021005)the National Basic Research Program of China (Grant No. 2009CB724504)the National Natural Science Foundation of China (Grant No. 50707036)
文摘Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.
文摘In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.
基金jointly supported by the Science Foundation of the Institute of Plasma Physics, the Chinese Academy of Sciences (No. DSJJ-14-YY02)National Natural Science Foundation of China (Grant Nos. 11475174 and 51777206)
文摘Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.
基金National High-tech Research & Development Plan(863 Projeet)(No.2008AA062317)National Natural Science Foundation of China(No.50578020)
文摘A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.
文摘Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar-10% O2, 80% At-20% 02 and 0% Ar-100% 02. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ,-0.0115 S m^-1 up to -0.0430 S m^-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.