期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Incremental multivariable predictive functional control and its application in a gas fractionation unit 被引量:3
1
作者 施惠元 苏成利 +3 位作者 曹江涛 李平 宋英莉 李宁波 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4653-4668,共16页
The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the t... The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process. 展开更多
关键词 gas fractionation unit multivariable process incremental predictive functional control
下载PDF
Component fractionation of temporal evolution in adsorption-desorption for binary gas mixtures on coals from Haishiwan Coal Mine 被引量:4
2
作者 Wang Liguo Cheng Yuanping +2 位作者 Li Wei Lu Shouqing Xu Chao 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期211-215,共5页
Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at consta... Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results. 展开更多
关键词 Binary-component gas Adsorption–desorption Component fractionation Temporal evolution
下载PDF
A novel complex network-based deep learning method for characterizing gas-liquid two-phase flow 被引量:2
3
作者 Zhong-Ke Gao Ming-Xu Liu +1 位作者 Wei-Dong Dang Qing Cai 《Petroleum Science》 SCIE CAS CSCD 2021年第1期259-268,共10页
Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to t... Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to the recognition of flow regime and the optimal design of industrial equipment.In this paper,we propose a novel complex network-based deep learning method for characterizing gas-liquid flow.Firstly,we map the multichannel measurements to multiple limited penetrable visibility graphs(LPVGs)and obtain their degree sequences as the graph representation.Based on the degree distribution,we analyze the complicated flow behavior under different flow structures.Then,we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction.We implement the model with two parallel branches with the same structure,each corresponding to one input.Each branch consists of a channel-projection convolutional part,a spatial-temporal convolutional part,a dense block and an attention module.The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement.At last,our method achieves an accuracy of 95.3%for the classification of flow structures,and a mean squared error of 0.0038 and a mean absolute percent error of 6.3%for the measurement of gas void fraction.Our method provides a promising solution for characterizing gas-liquid flow and measuring flow parameters. 展开更多
关键词 gas-liquid flow gas void fraction Flow structure Limited penetrable visibility graph Deep learning
下载PDF
Experimental study of the critical sand starting velocity of gas-watersand flow in an inclined pipe
4
作者 Rui-Yao Zhang Jun Li +3 位作者 Hong-Wei Yang Geng Zhang Xi-Ning Hao Peng-Lin Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2981-2994,共14页
The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment sy... The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment system of gas-water-sand three-phase flow was used to test the conversion law of flow pattern based upon the different gas void fraction.Secondly,the influence of slug bubbles on sand migration was investigated according to distinctive hole deviation angles,gas void fraction and sand concentration.Finally,the critical sand starting velocity was tested based on dissimilar hole deviation angles,gas void fraction,sand concentration and sand particle size,and then the influence of the abovementioned key parameters on the sand starting velocity was debated based on the force analysis of the sand particles.The experimental results illustrated that when the gas void fraction was less than 5%,it was bubbly flow.When it increased from 5%to 30%,the bubbly flow and slug flow coexisted.When it was between 30%and 50%,the slug flow and agitated flow coexisted.When it reached 50%,it was agitated flow.Providing that the hole deviation angle was 90°,the phenomenon of overall migration and wavelike migration on the surface of sand bed was observed.On the contrary,the phenomenon of rolling and jumping migration was recognized.The critical sand starting velocity was positively correlated with the hole deviation angle and sand particle size,but negatively associated with the gas void fraction and sand concentration.This research can provide a certain reference for sand-starting production in the field of petroleum engineering. 展开更多
关键词 Three-phase flow Critical sand starting velocity Flow pattern Sand migration gas void fraction Hole deviation angles Sand concentration
下载PDF
Uncertainty analysis of flow rate measurement for multiphase flow using CFD 被引量:9
5
作者 Joon-Hyung Kim Uk-Hee Jung +2 位作者 Sung Kim Joon-Yong Yoon Young-Seok Choi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期698-707,共10页
The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied... The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement. 展开更多
关键词 Multiphase flow Measurement Numerical analysis Venturi meter gas volume fraction(GVF) Uncertainty Multiphase flow model Grace model
下载PDF
A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy 被引量:2
6
作者 CHEN DeHua WANG XiuMing +3 位作者 CHE ChengXuan CONG JianSheng XU DeLong WANG XiaoMin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第8期1412-1418,共7页
In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Fi... In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows. 展开更多
关键词 acoustic resonance spectroscopy mixed gas-liquid flow gas volume fraction transient method
原文传递
Investigation on the performance of a helico-axial multiphase pump under slug flow
7
作者 Jia-Xiang Zhang Jin-Ya Zhang +2 位作者 Ye Zhou Zi-Yi-Yi Cheng Guang-Da Cao 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1812-1824,共13页
The helico-axial multiphase pump is often used for gas-liquid mixture transportation in offshore oilfields,and slug flow is the main reason for the unstable operation of the pump.Aimed for slug flow condition,a self-d... The helico-axial multiphase pump is often used for gas-liquid mixture transportation in offshore oilfields,and slug flow is the main reason for the unstable operation of the pump.Aimed for slug flow condition,a self-designed three-stage multiphase pump is set to the object to perform unsteady simulations and fluid-structure interaction calculations,and the inlet gas void fraction(IGVF)is set from 20%to 80%.The results show that affected by the flow from the slug,the gas-liquid two-phase flow pattern in the multiphase pump changes sharply,resulting in severe fluctuations in the differential pressure,spindle torque and deformation of the multiphase pump.The gas-phase enters the first-impeller along the suction blade surface when affected by Taylor bubbles,while the second and third-stage impellers gas-phases are in the form of small air masses flow into the impeller along the pressure blade surface.The deformation trend of impeller torque,differential pressure and the main pump spindle is similar to that of trigonometric function,while the fluctuation of torque is more intense,and the shape variable of spindle increases with the inflow of liquid plug,and the maximum deformation amount increases by10.9%at high GVF relative to IGVF. 展开更多
关键词 Multiphase pump Slug flow gas void fraction(GVF) Hydraulic performance Fluid-structure interaction
下载PDF
Rapid chemome profiling of Artemisia capillaris Thunb. using direct infusion-mass spectrometry
8
作者 Wenjing Liu Libo Cao +4 位作者 Jinru Jia Han Li Wei Li Jun Li Yuelin Song 《Journal of Traditional Chinese Medical Sciences》 2021年第4期327-335,共9页
Background:As one of the most popular traditional Chinese medicines(TCMs)for the treatment of various liver diseases,virgate wormwood herb(Artemisia capillaris Thunb.)has a long application history in TCM practices.It... Background:As one of the most popular traditional Chinese medicines(TCMs)for the treatment of various liver diseases,virgate wormwood herb(Artemisia capillaris Thunb.)has a long application history in TCM practices.It has been well established that the chemical composition is responsible for the pronounced therapeutic spectrum of A.capillaris.Although they are comprehensive,the time-intensive liquid chromatography coupled to tandem mass spectrometry(LCeMS/MS)assays cannot fully satisfy the analytical measurement workload from many test samples.Direct infusion-MS/MS(DIeMS/MS)may be the optimal choice to achieve high-throughput analysis if the mass spectrometer can universally record MS2 spectra.Methods:According to the application of gas phase ion fractionation concept,the MS/MSALL program enables to gain MS2 spectrum for each nominal m/z value with a data-independent acquisition algorithm via segmenting the entire MS1 ion cohort into sequential ion pieces with 1 Da width,when sufficient measurement time is allowed by DI approach.Here,rapid clarification of the chemical composition was attempted for A.capillaris using DIeMS/MSALL.A.capillaris extract was imported directly into the electrospray ionization interface to obtain the MS/MSALL measurement.After the MS1-MS2 dataset was well organized,we focused on structural characterization through retrieving information from the available databases and literature.Results:Twenty-six compounds were found,including 12 caffeoyl quinic acid derivatives,7 flavonoids,and 7 compounds belonging to other chemical families.Among them,24 ones were structurally identified.Compared with the LCeMS/MS technique,DIeMS/MSALL has the advantages of low-costing,solvent-saving,and time-saving.Conclusions:Chemical profiling of A.capillaris extract was accomplished within 5 min by DIeMS/MSALL,and this technique can be an alternative choice for chemical profile characterization of TCMs due to its extraordinary high-throughput advantage. 展开更多
关键词 Artemisia capillaris Thunb. Chemome characterization gas phase ion fractionation Mass fragmentation pathway MS/MSAL
下载PDF
Air-fuel ratio control with stochastic L_2 disturbance attenuation in gasoline engines 被引量:8
9
作者 Jun YANG Tielong SHEN Xiaohong JIAO 《控制理论与应用(英文版)》 EI CSCD 2013年第4期586-591,共6页
In this paper, the problem of stochastic L2 disturbance attenuation of the air-fuel ratio is investigated with consideration of cyclic variation of the residual gas fraction (RGF). A stochastic robust controller is ... In this paper, the problem of stochastic L2 disturbance attenuation of the air-fuel ratio is investigated with consideration of cyclic variation of the residual gas fraction (RGF). A stochastic robust controller is designed based on a discrete-time dynamic model in which the RGF is modeled as a stochastic process with Markovian property. Finally, the sampling process-based statistical analysis for the RGF and the validation of the proposed control law are presented through the experiments conducted on a gasoline engine test bench. 展开更多
关键词 Residual gas fraction Air-fuel ratio Stochastic robust control
原文传递
Hydrodynamic behavior of an internally circulating fluidized bed with tubular gas distributors 被引量:1
10
作者 Wenli Zhao Tiefeng Wang +1 位作者 Chenjing Wang Zuoliang Sha 《Particuology》 SCIE EI CAS CSCD 2013年第6期664-672,共9页
To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser ... To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser y^R, and from riser to down-comer yRD) were experimentally studied. The effects of gas velocities in the riser and in the down-comer (UR and UD), orifice diameter in the draft tube (dor), and draft tube height (HR) were investigated. Experimental results showed that increase of gas velocities led to increase in Gs and yDR, and slight decrease in yeD. Larger orifice diameter on the draft tube led to higher 8sD, Gs and yDR, but had insignificant influence on YRD. with increasing draft tube height, both Gs and YDR first increased and then decreased, while yRD first decreased and then increased. Proposed correlations for predicting the hydrodynamic parameters agreed reasonably well with experimental values. 展开更多
关键词 Internally circulating fluidized bed Solids holdup Solids circulation rate gas bypassing fraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部