In order to investigate the hydrocarbon generation process and gas potentials of source rocks in deepwater area of the Qiongdongnan Basin, kinetic parameters of gas generation (activation energy distribution and freq...In order to investigate the hydrocarbon generation process and gas potentials of source rocks in deepwater area of the Qiongdongnan Basin, kinetic parameters of gas generation (activation energy distribution and frequency factor) of the Yacheng Formation source rocks (coal and neritic mudstones) was determined by thermal simulation experiments in the closed system and the specific KINETICS Software. The results show that the activation energy (Ea) distribution of C1–C5 generation ranges from 50 to 74 kcal/mol with a frequency factor of 2.4×1015 s–1 for the neritic mudstone and the Ea distribution of C1–C5 generation ranges from 49 to 73 kcal/mol with a frequency factor of 8.92×1013 s–1 for the coal. On the basis of these kinetic parameters and combined with the data of sedimentary burial and paleothermal histories, the gas generation model of the Yacheng Formation source rocks closer to geological condition was worked out, indicating its main gas generation stage at Ro (vitrinite reflectance) of 1.25%–2.8%. Meanwhile, the gas generation process of the source rocks of different structural locations (central part, southern slope and south low uplift) in the Lingshui Sag was simulated. Among them, the gas generation of the Yacheng Formation source rocks in the central part and the southern slope of the sag entered the main gas window at 10 and 5 Ma respectively and the peak gas generation in the southern slope occurred at 3 Ma. The very late peak gas generation and the relatively large gas potential indices (GPI:20×10^8–60×10^8 m^3/km^2) would provide favorable conditions for the accumulation of large natural gas reserves in the deepwater area.展开更多
The gas generation features of coals at different maturities were studied by the anhydrous pyrolysis of Jurassic coal from the Minhe Basin in sealed gold tubes at 50 MPa.The gas component yields(C1,C2,C3,i-C4,n-C4,i-C...The gas generation features of coals at different maturities were studied by the anhydrous pyrolysis of Jurassic coal from the Minhe Basin in sealed gold tubes at 50 MPa.The gas component yields(C1,C2,C3,i-C4,n-C4,i-C5,n-C5,and CO2);theδ13C of C1,C2,C3,and CO2;and the mass of the liquid hydrocarbons(C6+)were measured.On the basis of these data,the stage changes ofδ13C1,δ13C2,δ13C3,andδ13CO2 were calculated.The diagrams ofδ13C1–δ13C2 vs ln(C1/C2)andδ13C2–δ13C1 vsδ13C3–δ13C2 were used to evaluate the gas generation features of the coal maturity stages.At the high maturity evolution stage(T>527.6°C at 2°C/h),the stage change ofδ13C1 and the CH4 yield are much higher than that of CO2,suggesting that high maturity coal could still generate methane.When T<455°C,CO2 is generated by breaking bonds between carbons and heteroatoms.The reaction between different sources of coke and water may be the reason for the complicated stage change inδ13CCO2 when the temperature was higher than 455°C.With increasing pyrolysis temperature,δ13C1–δ13C2 vs ln(C1/C2)has four evolution stages corresponding to the early stage of breaking bonds between carbon and hetero atoms,the later stage of breaking bonds between carbon and hetero atoms,the cracking of C6+and coal demethylation,and the cracking of C2–5.Theδ13C2–δ13C1 vsδ13C3–δ13C2 has three evolution stages corresponding to the breaking bonds between carbon and hetero atoms,demethylation and cracking of C6+,and cracking of C2–5.展开更多
The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC'...The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation展开更多
In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct therm...In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct thermal simulation experiments by mixing the nC18 with the water of different properties and proportions. The yields of natural gas components, the relation among hydrogen isotope composition of each component and the experimental temperatures vs. heating rates have been obtained, and the results indicate that under the higher temperature conditions, the hydrous experiment has obvious impact on gas yields, such as when more water is added, higher amounts of hydrocarbon gas and H2 are yielded, and the existence of water obviously prolongs the temperature interval with the existence of heavy hydrocarbon gas. It also shows that the hydrogen isotope of hydrocarbon gas generated by the hydrous experiment is obviously lighter than that generated by the anhydrous experiment, and with the increasing amount of added water, the δD value of hydrocarbon gas gradually decreases. Compared with gas yields, the variation of δD value is more sensitive to aqueous medium in the thermal simulation experiment. However, compared with the amount of the added water, the aqueous medium property has smaller impact on the gas yields, which still shows the inherit effect on hydrogen isotope composition of aqueous medium. Through the model simulation and the isotope fractionation behavior analysis, it is validated that the hydrogen isotope fractionation process can be well described by the chemical kinetic model. The difference of reaction fraction of normal methane and D-containing methane is large, corresponding to the same activation energy. The content of normal methane is obviously higher in the part with lower activation energy, while the content of D-containing methane is higher in the part with higher activation energy. Therefore, it will result in larger hydrogen isotope fractionation amplitude, and the δD values will be more sensitive to the variation of maturity. Meanwhile, the average activation energy of methane generation from nC18 in the hydrous experiment is higher than that in the anhydrous experiment, and the greater amount of added water, the larger the average activation energy of methane generation reaction. This has laid foundation for its exploratory application in the study of gas reservoir forming history and the gassource correlation, which indicates the research and application prospects in this orientation.展开更多
The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 k...The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin.展开更多
Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!fil...Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!filling commercial development after U.S. attd Canada. Natural gas import growth and growth rate declined obviously, and the imported pipeline gas and LNG totaled 61.2 billion cubic meters in 2015. Apparent natural gas consumption was 186.5 billion cubic meters in 2015, rising by 4.4% as compared with the same period last year, but it hit a historic low. There is higher dozonward pressure on domestic macro economy in 2016. However, natural gas demand will see more rapid growth, propelled by such favorable factors as gas price regulation and environmental protection policies. It is prospected that natural gas market will take a turn for the better than in 2015, and natural gas supply will still be rich in general in 2016.展开更多
The large number of gas turbines in large power companies is difficult to manage.A large amount of the data from the generating units is not mined and utilized for fault analysis.This study focuses on F-class(9F.05)ga...The large number of gas turbines in large power companies is difficult to manage.A large amount of the data from the generating units is not mined and utilized for fault analysis.This study focuses on F-class(9F.05)gas turbine generators and uses unsupervised learning and cloud computing technologies to analyse the faults for the gas turbines.Remote monitoring of the operational status are conducted.The study proposes a cloud computing service architecture for large gas turbine objects,which uses unsupervised learning models to monitor the operational state of the gas turbine.Faults such as chamber seal failure,load abnormality and temperature anomalies in the gas turbine system can be identified by using the method,which has an accuracy of 60%–80%.展开更多
Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretic...Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.展开更多
The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the...The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.展开更多
The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of H...The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of Huaibei-Huainan coalfields and Qinshui coal basin was discussed. The burial, thermal, and maturity histories of are similar between Huaibei coalfield and Huainan coalfield, obviously different from those of Qinshui coal basin. Based on the tectono-thermal evolution characters of Huaibei-Huainan coalfields and Qinshui basin, the process of coalbed gas generation can be divided into three stages: (1) Dur- ing Early Mesozoic, both in Huaibei-Huainan and Qinshui, the buried depth of Permian coal seams increased rapidly, which resulted in strong metamorphism and high burial temperature of coal seams. At this stage, the coal rank was mainly fat coal, and locally reached coking coal. These created an environment favoring the generation of thermogenic gas. (2) From Late Ju- rassic to Cretaceous, in the areas of Huaibei-Hualnan, the strata suffered from erosion and the crust became thinning, and the Permian coal-bearing strata were uplifted to surface. At this stage, the thermogenic gas mostly escaped. Conversely, in Qinshui basin, the cover strata of coal seams kept intact during this stage, and the thermogenic gas were mostly preserved. Furthermore, with the interaction of magmatism, the burial temperature of coal seams reached higher peak value, and it was suitable for the secondary generation of thermogenic gas. (3) From Paleogene onward, in area of Huainan-Huaibei, the maturity of coal and burial temperature were propitious to the generation of secondary biogenic gases. However, in Qinshui basin, the maturity of coal went against genesis of second biogenic gas or thermogenic gas. By comparison, Huaibei-Huainan coalfields are dominated by thermogenic gas with a significant biogenic gas and hydrodynamic overprint, whereas Qinshui basin is dominated mainly by thermogenic gas.展开更多
The real-time energy flow data obtained in industrial production processes are usually of low quality.It is difficult to accurately predict the short-term energy flow profile by using these field data,which diminishes...The real-time energy flow data obtained in industrial production processes are usually of low quality.It is difficult to accurately predict the short-term energy flow profile by using these field data,which diminishes the effect of industrial big data and artificial intelligence in industrial energy system.The real-time data of blast furnace gas(BFG)generation collected in iron and steel sites are also of low quality.In order to tackle this problem,a three-stage data quality improvement strategy was proposed to predict the BFG generation.In the first stage,correlation principle was used to test the sample set.In the second stage,the original sample set was rectified and updated.In the third stage,Kalman filter was employed to eliminate the noise of the updated sample set.The method was verified by autoregressive integrated moving average model,back propagation neural network model and long short-term memory model.The results show that the prediction model based on the proposed three-stage data quality improvement method performs well.Long short-term memory model has the best prediction performance,with a mean absolute error of 17.85 m3/min,a mean absolute percentage error of 0.21%,and an R squared of 95.17%.展开更多
The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by AN...The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by ANSI/AWS F1.2 methods. Particle characterization was performed with SEM-XEDS and XRF analysis to reveal the particle morphology and chemical composition of the fume particles. The SEM analysis reveals the morphology of particles having three distinct shapes namely spherical, irregular, and agglomerated. Spherical particles were the most abundant type of individual particle. All the fume particle size falls in the range of less than 100 nm. Mechanical properties (strength, hardness and toughness) and microstructural analysis of the weld deposits were evaluated. It is found that heat input of 1.15 kJ/mm is beneficial to weld stainless steel by GMAW process due to lower level of welding fume emissions and superior mechanical properties of the joints.展开更多
Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG ...Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG cold energy are introduced and summarized. The direction of cycle improvement can be divided into the key factors affecting basic power generation cycles and the structural enhancement of cycles utilizing LNG cold energy. The former includes the effects of LNG-side parameters, working fluids, and inlet and outlet thermodynamic parameters of equipment, while the latter is based on Rankine cycle, Brayton cycle, Kalina cycle and their compound cycles. In the present paper, the diversities of cryogenic power generation cycles utilizing LNG cold energy are discussed and analyzed. It is pointed out that further researches should focus on the selection and component matching of organic mixed working fluids and the combination of process simulation and experi- mental investigation, etc.展开更多
Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro...Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.展开更多
Source and occurrence of Excess Coalbed Methane is a long-term concern research topic in Coal Geology and Structural Geology. Since it is essential to understand the outburst mechanism of coal gas, and to support the ...Source and occurrence of Excess Coalbed Methane is a long-term concern research topic in Coal Geology and Structural Geology. Since it is essential to understand the outburst mechanism of coal gas, and to support the coalbed methane development projects as the theoretical basis. We found in the study that, huge imparity is behind the evolutionary trend on molecular structure and the mechanism of influence from different deformation. The thesis demonstrates its probable routes of gas evolution according to distinct deformation mechanisms of coal. In the role of brittle deformation mechanism, a rapidly formed advantage rupture surface along with sliding motion from which has worked on coal. As another result, mechanical energy has transformed into friction and kinetic energy during the process. Kinetic energy increases simultaneously, which brings some results, that the new generated gas molecule. While the chemical structure of coal remains in a steady-state and do not react easily an outburst with gas. Mechanical energy turns into strain energy through its ductile deformation mechanism. The dislocation or lamellar slip made disordered between the constitutional units of aromatic rings and aromatic lamellas, as soon as secondary structural defects created. On another hand, molecular motion accelerates and splits off the small molecular on the side chain, due to the dissociation of aromatic nucleus;CH<sub>4 </sub>gas molecular was generated and placed in the secondary structural defect of coal, along with a great deal of strain energy in non-steady-state. By breaking away the balance maintaining terms, huge strain energy releases suddenly, small moleculars are free from the secondary structure defect, react outburst with gas. Furthermore to extend the discussion of the conventional physical ideas on coal absorb gas, according to the phenomenon of exceeded CBM, the gas molecular has a significant chance existing in a low bond energy of chemical bonds of coal structure.展开更多
This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development ...This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development in Chinacoal industry, progress and perspective of clean coal power generation technology in China, as well as application andmarket of flue gas desulphurization technology in coal-fired power plants.[展开更多
Based on first-order kinetics of hydrolysis process, biodegradation of municipal solid waste (MSW) is assumed to obey a first-order decay equation which can take the direct effect of water content on biodegradation ...Based on first-order kinetics of hydrolysis process, biodegradation of municipal solid waste (MSW) is assumed to obey a first-order decay equation which can take the direct effect of water content on biodegradation into account. Hydraulic model is an unsaturated-saturated flow model using mass conservation equations for fluids. Mechanical compression of MSW is ex- pressed by a stress-age coupled compression model. Through above models, a one-dimensional (I-D) bio-hydro-mechanical coupled model is established to analyze solid-liquid-gas interactions in landfilled MSW. Values of all the model parameters for current typical Chinese MSW are determined. Numerical analysis of a hypothetical waste sample in a closed system shows that gas pressure and gas concentration is extremely large which might cause severe gas explosion problem. Total gas production is about 267.0 m3 per wet ton of fresh wastes. For another hypothetical landfilled MSW layer, the coupled model predicts a dis- sipation of gas pressure during passive gas collection process. Annual gas production is large at the beginning of biodegradation, and then decreases with time. Surface settlement of the wastes increases quickly initially and then becomes stable with a compression strain of about 0.32 after 20 years.展开更多
On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the fi...On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the first great oil and gas discovery for self-run deepwater exploration in China sea areas,and a strategic breakthrough was made in natural gas exploration in deepwater area of Lingshui sag in Qiongdongnan Basin.Under the combined action of climax of international deepwater exploration,high oil prices,national demands of China,practical needs of exploration,breakthroughs in seismic exploration and testing technologies,innovations in geological cognition and breakthroughs in deepwater operation equipment,Lingshui 17-2 gas field is discovered.Among these factors,the innovation in reservoir forming geological cognition directly promotes the discovery.The quality of seismic data in the early time is poor,so key reservoir forming conditions such as effective source rocks,high quality reservoirs and oil-gas migration pathways are unable to be ascertained;with support of new seismic acquisition and processing technology,some researches show that Lingshui sag is a successive large and deep sag with an area of 5000 km2 and the maximum thickness of Cenozoic stratum of 13 km.In the Early Oligocene,the Lingshui sag was a semi-closed delta-estuarine environment,where the coalmeasure and marine mudstones in Lower Oligocene Yacheng Formation were developed.The Lingshui sag is a sag with high temperature,and the bottom temperature of source rocks in Yacheng Formation can exceed 250C,but the simulation experiment of hydrocarbon generation at high temperature indicates that the main part of this set of source rock is still in the gas-generation window,with resources of nearly 1 trillion cubic meters,so the Lingshui sag is a hydrocarbon-rich generation sag.In the Neogene,the axial canyon channel from the Thu Bon River in Vietnam passed through the Lingshui sag,and five stages of secondary channels were developed in the axial canyon channel,where four types of reservoirs with excellent physical properties including the axial sand,lateral accretion sand,natural levee sand as well as erosion residual sand were developed,and lithologic traps or structural-lithologic traps were formed.The diapiric zone in the southern Lingshui sag connects deep source rocks in Yacheng Formation and shallow sandstones in the channels,and the migration pattern of natural gas is a T-type migration pattern,in other words,the natural gas generated from Yacheng Formation migrates vertically to the interior of the channel sandbody,and then migrates laterally in the channel reservoirs and forms the reservoirs.Innovations of geophysical exploration technologies for complicated geological conditions of deepwater areas are made,such as the detuning comprehensive quantitative amplitude hydrocarbon detection technology,which greatly improves the success rate of deepwater exploration;key technologies of deepwater safety exploratory well testing represented by the platform-dragged riser displacement technology are developed,which greatly reduces the drilling test cost.The above key exploration technologies provide a strong guarantee for the efficient exploration and development of Lingshui gas field.展开更多
Landfill gas(LFG)generation is commonly modeled by using a first-order model.Methane generation potential(L0)and methane generation rate constant(k)are two key parameters in the first-order model.Coal-ash based defaul...Landfill gas(LFG)generation is commonly modeled by using a first-order model.Methane generation potential(L0)and methane generation rate constant(k)are two key parameters in the first-order model.Coal-ash based default values or roughly analyzed values often used in China may not be appropriate for accurately estimating of LFG generation.In this study,seven groups of parameters were evaluated by comparing the theoretical predictions with real measurements from five Chinese landfills.The optimal approach for calculating L0 is the use of site-specific waste composition and the default values of degradable organic carbon(DOC)reported by the Chinese industry standard(CJJ133-2009),and the matching k can be adjusted by fitting and regression.The optimized average values were L0=67 m3 Mg−1,k=0.06 per year for landfills in Beijing and Zhengzhou in cold–dry regions,L0=69 m3 Mg−1,k=0.16 per year for landfill in Shanghai in cold–wet region,and L0=64 m3 Mg−1,k=0.21 per year for landfills in Guangzhou and Shenzhen in hot–wet regions.Monte Carlo analysis showed that the uncertainty of LFG generation at closure year varied in−22.5%to 20.5%,−17.1%to 17.1%and−28.2%to 34.7%for three climatic regions,respectively.The k value is the key influencing factor,with a 95.6%contribution ratio in the hot–wet region landfill.The results provide references for future better waste management.展开更多
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002
文摘In order to investigate the hydrocarbon generation process and gas potentials of source rocks in deepwater area of the Qiongdongnan Basin, kinetic parameters of gas generation (activation energy distribution and frequency factor) of the Yacheng Formation source rocks (coal and neritic mudstones) was determined by thermal simulation experiments in the closed system and the specific KINETICS Software. The results show that the activation energy (Ea) distribution of C1–C5 generation ranges from 50 to 74 kcal/mol with a frequency factor of 2.4×1015 s–1 for the neritic mudstone and the Ea distribution of C1–C5 generation ranges from 49 to 73 kcal/mol with a frequency factor of 8.92×1013 s–1 for the coal. On the basis of these kinetic parameters and combined with the data of sedimentary burial and paleothermal histories, the gas generation model of the Yacheng Formation source rocks closer to geological condition was worked out, indicating its main gas generation stage at Ro (vitrinite reflectance) of 1.25%–2.8%. Meanwhile, the gas generation process of the source rocks of different structural locations (central part, southern slope and south low uplift) in the Lingshui Sag was simulated. Among them, the gas generation of the Yacheng Formation source rocks in the central part and the southern slope of the sag entered the main gas window at 10 and 5 Ma respectively and the peak gas generation in the southern slope occurred at 3 Ma. The very late peak gas generation and the relatively large gas potential indices (GPI:20×10^8–60×10^8 m^3/km^2) would provide favorable conditions for the accumulation of large natural gas reserves in the deepwater area.
基金The authors would like to thank Prof.Liu Jinzhong and Dr.Xu An for their great help on experiments analysis.This work is financially supported by the Major science and technology projects of Shaanxi Coal Geology Group Co.,Ltd.(SMDZ-2019ZD-1)Independent subject of the Key Laboratory of Coal Exploration and Comprehensive Utilization,Ministry of Nature and Resources(ZP2019-3)+2 种基金the“Enterprise top innovative young talents support plan”(20190412)the“Shaanxi Provincial Postdoctoral Science Foundation(No.2018M633642XB)”China Postdoctoral Science Foundation(No.2018M633642XB).
文摘The gas generation features of coals at different maturities were studied by the anhydrous pyrolysis of Jurassic coal from the Minhe Basin in sealed gold tubes at 50 MPa.The gas component yields(C1,C2,C3,i-C4,n-C4,i-C5,n-C5,and CO2);theδ13C of C1,C2,C3,and CO2;and the mass of the liquid hydrocarbons(C6+)were measured.On the basis of these data,the stage changes ofδ13C1,δ13C2,δ13C3,andδ13CO2 were calculated.The diagrams ofδ13C1–δ13C2 vs ln(C1/C2)andδ13C2–δ13C1 vsδ13C3–δ13C2 were used to evaluate the gas generation features of the coal maturity stages.At the high maturity evolution stage(T>527.6°C at 2°C/h),the stage change ofδ13C1 and the CH4 yield are much higher than that of CO2,suggesting that high maturity coal could still generate methane.When T<455°C,CO2 is generated by breaking bonds between carbons and heteroatoms.The reaction between different sources of coke and water may be the reason for the complicated stage change inδ13CCO2 when the temperature was higher than 455°C.With increasing pyrolysis temperature,δ13C1–δ13C2 vs ln(C1/C2)has four evolution stages corresponding to the early stage of breaking bonds between carbon and hetero atoms,the later stage of breaking bonds between carbon and hetero atoms,the cracking of C6+and coal demethylation,and the cracking of C2–5.Theδ13C2–δ13C1 vsδ13C3–δ13C2 has three evolution stages corresponding to the breaking bonds between carbon and hetero atoms,demethylation and cracking of C6+,and cracking of C2–5.
文摘The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation
基金supported by grants from the Natural Science Foundation of China(40972101,40572079)the National Key Basic Research and Development Program (2009CB219306)
文摘In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct thermal simulation experiments by mixing the nC18 with the water of different properties and proportions. The yields of natural gas components, the relation among hydrogen isotope composition of each component and the experimental temperatures vs. heating rates have been obtained, and the results indicate that under the higher temperature conditions, the hydrous experiment has obvious impact on gas yields, such as when more water is added, higher amounts of hydrocarbon gas and H2 are yielded, and the existence of water obviously prolongs the temperature interval with the existence of heavy hydrocarbon gas. It also shows that the hydrogen isotope of hydrocarbon gas generated by the hydrous experiment is obviously lighter than that generated by the anhydrous experiment, and with the increasing amount of added water, the δD value of hydrocarbon gas gradually decreases. Compared with gas yields, the variation of δD value is more sensitive to aqueous medium in the thermal simulation experiment. However, compared with the amount of the added water, the aqueous medium property has smaller impact on the gas yields, which still shows the inherit effect on hydrogen isotope composition of aqueous medium. Through the model simulation and the isotope fractionation behavior analysis, it is validated that the hydrogen isotope fractionation process can be well described by the chemical kinetic model. The difference of reaction fraction of normal methane and D-containing methane is large, corresponding to the same activation energy. The content of normal methane is obviously higher in the part with lower activation energy, while the content of D-containing methane is higher in the part with higher activation energy. Therefore, it will result in larger hydrogen isotope fractionation amplitude, and the δD values will be more sensitive to the variation of maturity. Meanwhile, the average activation energy of methane generation from nC18 in the hydrous experiment is higher than that in the anhydrous experiment, and the greater amount of added water, the larger the average activation energy of methane generation reaction. This has laid foundation for its exploratory application in the study of gas reservoir forming history and the gassource correlation, which indicates the research and application prospects in this orientation.
基金Supported by the China National Science and Technology Major Project (2016ZX05024-003)
文摘The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin.
文摘Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!filling commercial development after U.S. attd Canada. Natural gas import growth and growth rate declined obviously, and the imported pipeline gas and LNG totaled 61.2 billion cubic meters in 2015. Apparent natural gas consumption was 186.5 billion cubic meters in 2015, rising by 4.4% as compared with the same period last year, but it hit a historic low. There is higher dozonward pressure on domestic macro economy in 2016. However, natural gas demand will see more rapid growth, propelled by such favorable factors as gas price regulation and environmental protection policies. It is prospected that natural gas market will take a turn for the better than in 2015, and natural gas supply will still be rich in general in 2016.
基金the China Datang Group Corporation of Science and Technology Project Plans(DT/KJ/2013-42)。
文摘The large number of gas turbines in large power companies is difficult to manage.A large amount of the data from the generating units is not mined and utilized for fault analysis.This study focuses on F-class(9F.05)gas turbine generators and uses unsupervised learning and cloud computing technologies to analyse the faults for the gas turbines.Remote monitoring of the operational status are conducted.The study proposes a cloud computing service architecture for large gas turbine objects,which uses unsupervised learning models to monitor the operational state of the gas turbine.Faults such as chamber seal failure,load abnormality and temperature anomalies in the gas turbine system can be identified by using the method,which has an accuracy of 60%–80%.
文摘Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.
基金Supported by the Provincial personnel training funds(kksy201352109)the National Natural Science Foundation of China(51374118)
文摘The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.
基金supported by National Natural Science Foundation of China (Grant Nos. 41030422, 40772135, 40972131, 40940014)National Basic Research Program of China (Grant No. 2009CB219601)
文摘The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of Huaibei-Huainan coalfields and Qinshui coal basin was discussed. The burial, thermal, and maturity histories of are similar between Huaibei coalfield and Huainan coalfield, obviously different from those of Qinshui coal basin. Based on the tectono-thermal evolution characters of Huaibei-Huainan coalfields and Qinshui basin, the process of coalbed gas generation can be divided into three stages: (1) Dur- ing Early Mesozoic, both in Huaibei-Huainan and Qinshui, the buried depth of Permian coal seams increased rapidly, which resulted in strong metamorphism and high burial temperature of coal seams. At this stage, the coal rank was mainly fat coal, and locally reached coking coal. These created an environment favoring the generation of thermogenic gas. (2) From Late Ju- rassic to Cretaceous, in the areas of Huaibei-Hualnan, the strata suffered from erosion and the crust became thinning, and the Permian coal-bearing strata were uplifted to surface. At this stage, the thermogenic gas mostly escaped. Conversely, in Qinshui basin, the cover strata of coal seams kept intact during this stage, and the thermogenic gas were mostly preserved. Furthermore, with the interaction of magmatism, the burial temperature of coal seams reached higher peak value, and it was suitable for the secondary generation of thermogenic gas. (3) From Paleogene onward, in area of Huainan-Huaibei, the maturity of coal and burial temperature were propitious to the generation of secondary biogenic gases. However, in Qinshui basin, the maturity of coal went against genesis of second biogenic gas or thermogenic gas. By comparison, Huaibei-Huainan coalfields are dominated by thermogenic gas with a significant biogenic gas and hydrodynamic overprint, whereas Qinshui basin is dominated mainly by thermogenic gas.
基金supported by the National Natural Science Foundation of China(51734004 and 51704069).
文摘The real-time energy flow data obtained in industrial production processes are usually of low quality.It is difficult to accurately predict the short-term energy flow profile by using these field data,which diminishes the effect of industrial big data and artificial intelligence in industrial energy system.The real-time data of blast furnace gas(BFG)generation collected in iron and steel sites are also of low quality.In order to tackle this problem,a three-stage data quality improvement strategy was proposed to predict the BFG generation.In the first stage,correlation principle was used to test the sample set.In the second stage,the original sample set was rectified and updated.In the third stage,Kalman filter was employed to eliminate the noise of the updated sample set.The method was verified by autoregressive integrated moving average model,back propagation neural network model and long short-term memory model.The results show that the prediction model based on the proposed three-stage data quality improvement method performs well.Long short-term memory model has the best prediction performance,with a mean absolute error of 17.85 m3/min,a mean absolute percentage error of 0.21%,and an R squared of 95.17%.
文摘The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by ANSI/AWS F1.2 methods. Particle characterization was performed with SEM-XEDS and XRF analysis to reveal the particle morphology and chemical composition of the fume particles. The SEM analysis reveals the morphology of particles having three distinct shapes namely spherical, irregular, and agglomerated. Spherical particles were the most abundant type of individual particle. All the fume particle size falls in the range of less than 100 nm. Mechanical properties (strength, hardness and toughness) and microstructural analysis of the weld deposits were evaluated. It is found that heat input of 1.15 kJ/mm is beneficial to weld stainless steel by GMAW process due to lower level of welding fume emissions and superior mechanical properties of the joints.
文摘Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG cold energy are introduced and summarized. The direction of cycle improvement can be divided into the key factors affecting basic power generation cycles and the structural enhancement of cycles utilizing LNG cold energy. The former includes the effects of LNG-side parameters, working fluids, and inlet and outlet thermodynamic parameters of equipment, while the latter is based on Rankine cycle, Brayton cycle, Kalina cycle and their compound cycles. In the present paper, the diversities of cryogenic power generation cycles utilizing LNG cold energy are discussed and analyzed. It is pointed out that further researches should focus on the selection and component matching of organic mixed working fluids and the combination of process simulation and experi- mental investigation, etc.
基金Supported by the National Natural Science Foundation of China(41201303,20807028,41372262)the Fundamental Research for the Central Universities(14CX02052A,14CX02191A)+1 种基金the Qingdao Science and Technology Program for young scientists(14-2-4-86-jch)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF13023)
文摘Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.
文摘Source and occurrence of Excess Coalbed Methane is a long-term concern research topic in Coal Geology and Structural Geology. Since it is essential to understand the outburst mechanism of coal gas, and to support the coalbed methane development projects as the theoretical basis. We found in the study that, huge imparity is behind the evolutionary trend on molecular structure and the mechanism of influence from different deformation. The thesis demonstrates its probable routes of gas evolution according to distinct deformation mechanisms of coal. In the role of brittle deformation mechanism, a rapidly formed advantage rupture surface along with sliding motion from which has worked on coal. As another result, mechanical energy has transformed into friction and kinetic energy during the process. Kinetic energy increases simultaneously, which brings some results, that the new generated gas molecule. While the chemical structure of coal remains in a steady-state and do not react easily an outburst with gas. Mechanical energy turns into strain energy through its ductile deformation mechanism. The dislocation or lamellar slip made disordered between the constitutional units of aromatic rings and aromatic lamellas, as soon as secondary structural defects created. On another hand, molecular motion accelerates and splits off the small molecular on the side chain, due to the dissociation of aromatic nucleus;CH<sub>4 </sub>gas molecular was generated and placed in the secondary structural defect of coal, along with a great deal of strain energy in non-steady-state. By breaking away the balance maintaining terms, huge strain energy releases suddenly, small moleculars are free from the secondary structure defect, react outburst with gas. Furthermore to extend the discussion of the conventional physical ideas on coal absorb gas, according to the phenomenon of exceeded CBM, the gas molecular has a significant chance existing in a low bond energy of chemical bonds of coal structure.
文摘This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development in Chinacoal industry, progress and perspective of clean coal power generation technology in China, as well as application andmarket of flue gas desulphurization technology in coal-fired power plants.[
基金supported by the National Natural Science Foundation of China (Grant Nos.51010008, 10972195)the National Basic Research Program of China ("973" Project) (Grant No.2012CB719800)
文摘Based on first-order kinetics of hydrolysis process, biodegradation of municipal solid waste (MSW) is assumed to obey a first-order decay equation which can take the direct effect of water content on biodegradation into account. Hydraulic model is an unsaturated-saturated flow model using mass conservation equations for fluids. Mechanical compression of MSW is ex- pressed by a stress-age coupled compression model. Through above models, a one-dimensional (I-D) bio-hydro-mechanical coupled model is established to analyze solid-liquid-gas interactions in landfilled MSW. Values of all the model parameters for current typical Chinese MSW are determined. Numerical analysis of a hypothetical waste sample in a closed system shows that gas pressure and gas concentration is extremely large which might cause severe gas explosion problem. Total gas production is about 267.0 m3 per wet ton of fresh wastes. For another hypothetical landfilled MSW layer, the coupled model predicts a dis- sipation of gas pressure during passive gas collection process. Annual gas production is large at the beginning of biodegradation, and then decreases with time. Surface settlement of the wastes increases quickly initially and then becomes stable with a compression strain of about 0.32 after 20 years.
基金The work was supported by China National Significant Science and Technology Project(No.2008ZX05025,No.2011ZX05025,No.2016ZX05026)China National Key Basic Research and Development Program(973 Program)(2009CB219400)Project of Ministry of Land and Resources of the People's Republic of China(XQ2004-05,XQ2007-05).
文摘On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the first great oil and gas discovery for self-run deepwater exploration in China sea areas,and a strategic breakthrough was made in natural gas exploration in deepwater area of Lingshui sag in Qiongdongnan Basin.Under the combined action of climax of international deepwater exploration,high oil prices,national demands of China,practical needs of exploration,breakthroughs in seismic exploration and testing technologies,innovations in geological cognition and breakthroughs in deepwater operation equipment,Lingshui 17-2 gas field is discovered.Among these factors,the innovation in reservoir forming geological cognition directly promotes the discovery.The quality of seismic data in the early time is poor,so key reservoir forming conditions such as effective source rocks,high quality reservoirs and oil-gas migration pathways are unable to be ascertained;with support of new seismic acquisition and processing technology,some researches show that Lingshui sag is a successive large and deep sag with an area of 5000 km2 and the maximum thickness of Cenozoic stratum of 13 km.In the Early Oligocene,the Lingshui sag was a semi-closed delta-estuarine environment,where the coalmeasure and marine mudstones in Lower Oligocene Yacheng Formation were developed.The Lingshui sag is a sag with high temperature,and the bottom temperature of source rocks in Yacheng Formation can exceed 250C,but the simulation experiment of hydrocarbon generation at high temperature indicates that the main part of this set of source rock is still in the gas-generation window,with resources of nearly 1 trillion cubic meters,so the Lingshui sag is a hydrocarbon-rich generation sag.In the Neogene,the axial canyon channel from the Thu Bon River in Vietnam passed through the Lingshui sag,and five stages of secondary channels were developed in the axial canyon channel,where four types of reservoirs with excellent physical properties including the axial sand,lateral accretion sand,natural levee sand as well as erosion residual sand were developed,and lithologic traps or structural-lithologic traps were formed.The diapiric zone in the southern Lingshui sag connects deep source rocks in Yacheng Formation and shallow sandstones in the channels,and the migration pattern of natural gas is a T-type migration pattern,in other words,the natural gas generated from Yacheng Formation migrates vertically to the interior of the channel sandbody,and then migrates laterally in the channel reservoirs and forms the reservoirs.Innovations of geophysical exploration technologies for complicated geological conditions of deepwater areas are made,such as the detuning comprehensive quantitative amplitude hydrocarbon detection technology,which greatly improves the success rate of deepwater exploration;key technologies of deepwater safety exploratory well testing represented by the platform-dragged riser displacement technology are developed,which greatly reduces the drilling test cost.The above key exploration technologies provide a strong guarantee for the efficient exploration and development of Lingshui gas field.
基金supported by the cooperation project of Henan Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration and Zhengzhou Municipal Solid Waste Comprehensive Treatment Center,Zhengzhou City Administration Bureau.
文摘Landfill gas(LFG)generation is commonly modeled by using a first-order model.Methane generation potential(L0)and methane generation rate constant(k)are two key parameters in the first-order model.Coal-ash based default values or roughly analyzed values often used in China may not be appropriate for accurately estimating of LFG generation.In this study,seven groups of parameters were evaluated by comparing the theoretical predictions with real measurements from five Chinese landfills.The optimal approach for calculating L0 is the use of site-specific waste composition and the default values of degradable organic carbon(DOC)reported by the Chinese industry standard(CJJ133-2009),and the matching k can be adjusted by fitting and regression.The optimized average values were L0=67 m3 Mg−1,k=0.06 per year for landfills in Beijing and Zhengzhou in cold–dry regions,L0=69 m3 Mg−1,k=0.16 per year for landfill in Shanghai in cold–wet region,and L0=64 m3 Mg−1,k=0.21 per year for landfills in Guangzhou and Shenzhen in hot–wet regions.Monte Carlo analysis showed that the uncertainty of LFG generation at closure year varied in−22.5%to 20.5%,−17.1%to 17.1%and−28.2%to 34.7%for three climatic regions,respectively.The k value is the key influencing factor,with a 95.6%contribution ratio in the hot–wet region landfill.The results provide references for future better waste management.