The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phen...As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phenomenon in the gas generator.The pyrotechnic gas generator is modelling by a simplified filter structure with fiber arrays.A finite-volume model of the heat and fluid flow is proposed to simulate the detailed multi-dimensional flow and energy conversion behaviors.Several verification results are in good agreement with data in different references.Simulation results demonstrate that the filter can not only absorb heat from the gas but also cause the high intensity enhancement of the heat transfer.The performance difference between inline and staggered arrays is also discussed.The findings of the study put a further prediction tool for the understanding and design of the filter system with fibers.展开更多
The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of ...The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of single disc and combined discs on rotor dynamic characteristics are firstly implemented in respect of the dispersity of rotor initial unbalance.It is found that the most important factors contributing to rotor vibration are the unbalances of the first stage compressor disc and the second stage turbine disc.However,reducing the mass of two discs conflicts with the control of the whole gas generator rotor balance resulting from the unbalance increase of single components.Thus,we further analyze the key control factors of affecting rotor initial unbalance,and give the strict control measures of centrifugal impeller runout in the assembly process by adjusting the angle of central tie rod axis.The purpose of this measures to make the assembly process simpler and more effective for timely controlling rotor initial unbalance.The efforts of this study validate that the proposed method is workable for the rotor tightened by a central tie rod and possesses the significant meaning of practical application in engineering.展开更多
A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was...A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.展开更多
With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important...With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.展开更多
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from ...We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.展开更多
The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constrai...The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.展开更多
In this paper, we investigate the elementary wave interactions of the Aw-Rascle model for the generalized Chaplygin gas. We construct the unique solution by the characteristic analysis method and obtain the stability ...In this paper, we investigate the elementary wave interactions of the Aw-Rascle model for the generalized Chaplygin gas. We construct the unique solution by the characteristic analysis method and obtain the stability of the corresponding Riemann solutions under such small perturbations on the initial values. We find that the elementary wave interactions have a much more simple structure for Temple class than general systems of conservation laws. It is important to study the elementary waves interactions of the traffic flow system for the generalized Chaplygin gas not only because of their significance in practical applications in the traffic flow system, but also because of their basic role for the general mathematical theory.展开更多
In this paper we have considered a model of the universe filled with Generalized Cosmic Chaplygin Gas and another fluid with barotropic equation of state. We observe its role in accelerating phase of the universe by c...In this paper we have considered a model of the universe filled with Generalized Cosmic Chaplygin Gas and another fluid with barotropic equation of state. We observe its role in accelerating phase of the universe by considering the mixture of these two fluid models valid from the radiation era to for and the radiation era to quintessence model for . The statefinder parameters describe the evolution of the universe in different phases for these two fluid models.展开更多
Using recently observed data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the measurement results of baryon acoustic oscillation (BAO) from the Sloan Digital Sky ...Using recently observed data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the measurement results of baryon acoustic oscillation (BAO) from the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy Redshift Survey (2dFGRS), and the current cosmic microwave background (CMB) data from the five-year Wilkinson Microwave Anisotropy Probe (WMAP), we apply the Markov Chain Monte Carlo method to investigate the observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. For this unified model, the constraints on GCG mixture are discussed by considering the different expressions of current matter density or considering constraints as being independent of the matter quantity Ωm.展开更多
We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,cons...We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,constant as well as function of scalar field.We construct dynamical equations as well as a relationship between scalar and radiation energy densities under slow-roll approximation.We also derive slow-roll parameters,scalar and tensor power spectra,scalar spectral index,tensor to scalar ratio for analyzing inflationary background during high dissipative regime.We also use the WMAP7 data for the discussion of our parameters.展开更多
This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous ...This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type Ⅰ space-time have been obtained. The solutions of the Einstein's field equations are obtained by considering(i) the power law relation between Hubble parameter H and scale factor R and(ii) scale factor of the form R =-1/t + t^2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-Ⅰ and solution type-Ⅱ.展开更多
Current observations indicate that 95% of the energy density in the universe is the unknown dark component.The dark component is considered composed of two fluids:dark matter and dark energy.Or it is a mixture of thes...Current observations indicate that 95% of the energy density in the universe is the unknown dark component.The dark component is considered composed of two fluids:dark matter and dark energy.Or it is a mixture of these two dark components,i.e.,one can consider it an exotic unknown dark fluid.With this consideration,the variable generalized Chaplygin gas(VGCG)model is studied with not dividing the unknown fluid into dark matter and dark energy parts in this paper.By using the Markov Chain Monte Carlo method,the VGCG model as the unification of dark sectors is constrained,and the constraint results on the VGCG model parameters are,n=0.00057+0.0001+0.0009-0.0006-0.0006,α=0.0015+0.0003+0.0017-0.0015-0.0015and B s=0.778+0.016+0.030-0.016-0.035,obtained by the cosmic microwave background data from the 7-year WMAP full data points,the baryon acoustic oscillation data from Sloan Digital Sky Survey(SDSS)and 2-degree Field Galaxy Redshift(2dFGRS)survey,and the Union2 type Ia supernova data with systematic errors.At last,according to the evolution of deceleration parameter it is shown that an expanded universe from deceleration to acceleration can be obtained in VGCG cosmology.展开更多
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
基金This work is supported by the National Natural Science Foundation of China(Grant No.11972194)the Fundamental Research Funds for the Central Universities,No.30918011323China Postdoctoral Science Foundation funded project(Grant No.2015M581797).
文摘As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phenomenon in the gas generator.The pyrotechnic gas generator is modelling by a simplified filter structure with fiber arrays.A finite-volume model of the heat and fluid flow is proposed to simulate the detailed multi-dimensional flow and energy conversion behaviors.Several verification results are in good agreement with data in different references.Simulation results demonstrate that the filter can not only absorb heat from the gas but also cause the high intensity enhancement of the heat transfer.The performance difference between inline and staggered arrays is also discussed.The findings of the study put a further prediction tool for the understanding and design of the filter system with fibers.
文摘The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of single disc and combined discs on rotor dynamic characteristics are firstly implemented in respect of the dispersity of rotor initial unbalance.It is found that the most important factors contributing to rotor vibration are the unbalances of the first stage compressor disc and the second stage turbine disc.However,reducing the mass of two discs conflicts with the control of the whole gas generator rotor balance resulting from the unbalance increase of single components.Thus,we further analyze the key control factors of affecting rotor initial unbalance,and give the strict control measures of centrifugal impeller runout in the assembly process by adjusting the angle of central tie rod axis.The purpose of this measures to make the assembly process simpler and more effective for timely controlling rotor initial unbalance.The efforts of this study validate that the proposed method is workable for the rotor tightened by a central tie rod and possesses the significant meaning of practical application in engineering.
基金supported by the National Research Foundation of Korea grant funded by the Korean Government(MSIP)NRF-2012M1A3A3A02033146 and NRF-2013M1A3A3A02042434
文摘A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.
基金the National Social Science Funds of China (13&ZD159)the National Natural Science Foundation of China (71303258, 71373285)+1 种基金MOE (Ministry of Education in China) Project of Humanities and Social Sciences (13YJC630148)Science Foundation of China University of Petroleum, Beijing (ZX20150130) for sponsoring this joint research
文摘With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.
基金supported by the National Natural Science Foundation of China under the Distinguished Young Scholar program(Grant No. 10825313)the National Basic Research Program of China (973 program,Grant No. 2012CB821804)the Fundamental Research Funds for the Central Universities and Scientific Research Foundation of Beijing Normal University
文摘We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.
基金Supported by the National Natural Science Foundation of China under Grants Nos 11175093,11222545,11435006,and 11375092the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20124306110001the K.C.Wong Magna Fund of Ningbo University
文摘The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.
文摘In this paper, we investigate the elementary wave interactions of the Aw-Rascle model for the generalized Chaplygin gas. We construct the unique solution by the characteristic analysis method and obtain the stability of the corresponding Riemann solutions under such small perturbations on the initial values. We find that the elementary wave interactions have a much more simple structure for Temple class than general systems of conservation laws. It is important to study the elementary waves interactions of the traffic flow system for the generalized Chaplygin gas not only because of their significance in practical applications in the traffic flow system, but also because of their basic role for the general mathematical theory.
文摘In this paper we have considered a model of the universe filled with Generalized Cosmic Chaplygin Gas and another fluid with barotropic equation of state. We observe its role in accelerating phase of the universe by considering the mixture of these two fluid models valid from the radiation era to for and the radiation era to quintessence model for . The statefinder parameters describe the evolution of the universe in different phases for these two fluid models.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10875056 and 10703001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20070141034)
文摘Using recently observed data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the measurement results of baryon acoustic oscillation (BAO) from the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy Redshift Survey (2dFGRS), and the current cosmic microwave background (CMB) data from the five-year Wilkinson Microwave Anisotropy Probe (WMAP), we apply the Markov Chain Monte Carlo method to investigate the observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. For this unified model, the constraints on GCG mixture are discussed by considering the different expressions of current matter density or considering constraints as being independent of the matter quantity Ωm.
文摘We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,constant as well as function of scalar field.We construct dynamical equations as well as a relationship between scalar and radiation energy densities under slow-roll approximation.We also derive slow-roll parameters,scalar and tensor power spectra,scalar spectral index,tensor to scalar ratio for analyzing inflationary background during high dissipative regime.We also use the WMAP7 data for the discussion of our parameters.
文摘This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type Ⅰ space-time have been obtained. The solutions of the Einstein's field equations are obtained by considering(i) the power law relation between Hubble parameter H and scale factor R and(ii) scale factor of the form R =-1/t + t^2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-Ⅰ and solution type-Ⅱ.
基金supported by the National Natural Science Foundation of China(Grant Nos.11147150,11205078,and 11275035)the Natural Science Foundation of Education Department of Liaoning Province(Grant No.L2011189)
文摘Current observations indicate that 95% of the energy density in the universe is the unknown dark component.The dark component is considered composed of two fluids:dark matter and dark energy.Or it is a mixture of these two dark components,i.e.,one can consider it an exotic unknown dark fluid.With this consideration,the variable generalized Chaplygin gas(VGCG)model is studied with not dividing the unknown fluid into dark matter and dark energy parts in this paper.By using the Markov Chain Monte Carlo method,the VGCG model as the unification of dark sectors is constrained,and the constraint results on the VGCG model parameters are,n=0.00057+0.0001+0.0009-0.0006-0.0006,α=0.0015+0.0003+0.0017-0.0015-0.0015and B s=0.778+0.016+0.030-0.016-0.035,obtained by the cosmic microwave background data from the 7-year WMAP full data points,the baryon acoustic oscillation data from Sloan Digital Sky Survey(SDSS)and 2-degree Field Galaxy Redshift(2dFGRS)survey,and the Union2 type Ia supernova data with systematic errors.At last,according to the evolution of deceleration parameter it is shown that an expanded universe from deceleration to acceleration can be obtained in VGCG cosmology.