A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported P...A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability.展开更多
The promoting effect of zirconium addition on Pd/Beta catalysts has been investigated in the selective hydrogenation of phenol to cyclohexanone in the aqueous phase. The activity of the catalyst in the reaction was gr...The promoting effect of zirconium addition on Pd/Beta catalysts has been investigated in the selective hydrogenation of phenol to cyclohexanone in the aqueous phase. The activity of the catalyst in the reaction was greatly improved by introducing Zr atoms into the framework of H-Beta zeolite. An important synergy between the Zr species and Pd, affecting the Pd dispersion state on the support, has been observed. The modification of the support with Zr^(4+) improves the Lewis/Brφnsted acid ratio of the catalyst, suppressing the further transformation of cyclohexanone. The kinetics of Pd/Zr-Beta catalyst showed high selectivity to cyclohexanone. The catalytic results showed that the Pd/Zr-Beta had the best catalytic performance at the desired temperature of 80℃ for 5 h.展开更多
Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective ...Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.展开更多
Phenol hydrogenation is a green route to prepare cyclohexanone,an intermediate for the production of nylon 66 and nylon 6.The development of high-performance catalysts still keeps a great challenge.Herein,the activate...Phenol hydrogenation is a green route to prepare cyclohexanone,an intermediate for the production of nylon 66 and nylon 6.The development of high-performance catalysts still keeps a great challenge.Herein,the activated carbon(AC)was modified with an acidic material Nb_(2)O_(5)to adjust the microstructure and surface properties of AC,and the influences of the calcination temperature and Nb_(2)O_(5)content on the catalytic performance of the Pd/AC-Nb_(2)O_(5)catalysts for the phenol hydrogenation to cyclohexanone were investigated.The Nb_(2)O_(5)with proper content can be highly uniformly distributed on the AC surface,enhancing the acidity of the Pd/AC-Nb_(2)O_(5)catalysts with comparable specific surface area and Pd dispersion,thereby improving the catalytic activity.The hybrid Pd/AC-10 Nb_(2)O_(5)-500 catalyst exhibits the synergistic effect between the Pd nanoparticles and AC-10 Nb_(2)O_(5),which enhances the catalytic activity for the hydrogenation of phenol.Furthermore,the as-prepared Pd/AC-10 Nb_(2)O_(5)-500 catalyst shows good reusability during 7 reaction cycles.展开更多
A natural polymer catalyst, silica-supported chitosan palladium complex (abbr. as SiO2-CS-Pd) was found to catalyze the hydrogenation of phenol and cresols to corresponding cyclohexanones in high yield and 100% select...A natural polymer catalyst, silica-supported chitosan palladium complex (abbr. as SiO2-CS-Pd) was found to catalyze the hydrogenation of phenol and cresols to corresponding cyclohexanones in high yield and 100% selectivity at 70 degrees C and 1.01325 x 10(5) Pa mild conditions. N/Pd molar ratio in the complex, temperature and solvents have much influence on the reaction. The reactivity order of reactants was found to be: phenol >m->p->o- The catalyst is stable during the reaction and could be repeatedly used for several times without much decrease in its catalytic activity.展开更多
Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is s...Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism.This work tries to unravel the mechanism of phenol hydro-genation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions.Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions.The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hy-drogenation,in which two factors are found to be responsible,i.e.the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone,if the specific co-catalyzing effect of H 2 O on Ru is not considered.Based on the above results,a quantitative descriptor,E b(one/pl)/E a,in which E a can be further correlated to the d band center of the noble metal catalyst,is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening.展开更多
The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous r...The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous reaction conditions.Here,we found that the presence of Na alkaline additives(NaX,X=CO3^2–,HCO^3–,or OH^–)on Pd/Al2O3 not only promoted the phenol conversion from 8.3%to>99%but also increased the cyclohexanone selectivity from 89%to>97%during the continuous hydrogenation of phenol on a fixed bed reactor.After 1200 h of continuous reaction,no activity or selectivity attenuation was observed and the turnover number was approximately 2.9×10^5.Density functional theory calculations,spectroscopic,and dynamics studies demonstrated that the addition of NaX greatly promoted phenol adsorption and hydrogen activation,thereby improving catalytic activity.Simultaneously,the formation of a“-C=O-Na-”intermediate inhibited the excessive hydrogenation and intermolecular coupling of cyclohexanone,leading to high selectivity.展开更多
A new kind of inorganic polymer, viz, silica-supported polytitazane (Ti-N), and its platinum complex (Ti-N-Pt) were prepared. Cyclohexanone can be obtained in a maximum yield of about 62.2% in the hydrogenation of phe...A new kind of inorganic polymer, viz, silica-supported polytitazane (Ti-N), and its platinum complex (Ti-N-Pt) were prepared. Cyclohexanone can be obtained in a maximum yield of about 62.2% in the hydrogenation of phenol over Ti-N-Pt at room temperature under atmospheric pressure. The effects of mole ratio of N/Pt in the complex, concentration of the catalyst and reaction temperature on the catalytic activity and selectivity have been studied. The complex can be reused several times without loss in its catalytic activity.展开更多
Pd/TiN nanocomposite catalysts were fabricated for one-step selective hydrogenation of phenol to cyclohexanone successfully. High conversion of phenol (99%) and selectivity of cyclohexanone (98%) were obtained at ...Pd/TiN nanocomposite catalysts were fabricated for one-step selective hydrogenation of phenol to cyclohexanone successfully. High conversion of phenol (99%) and selectivity of cyclohexanone (98%) were obtained at 30 ℃ and 0.2 MPa H2 for 12 h in the mixed solvents of H20 and CH2C12. The Pd nanoparticles were stable in the reaction, and no aggregation was detected after four successive runs. The catalytic activity and selectivity depended on slightly the Pd particle sizes. The generality of the catalysts for this reaction was demonstrated by the selective hydrogenation of phenol derivatives, which showed that the catalyst was selective for the formation of cyclohexanone.展开更多
基金supported by the National Natural Science Foundation of China(21473155,21273198,21073159)the Natural Science Foundation of Zhejiang Province(LZ12B03001)~~
文摘A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability.
基金Financial supports from the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)。
文摘The promoting effect of zirconium addition on Pd/Beta catalysts has been investigated in the selective hydrogenation of phenol to cyclohexanone in the aqueous phase. The activity of the catalyst in the reaction was greatly improved by introducing Zr atoms into the framework of H-Beta zeolite. An important synergy between the Zr species and Pd, affecting the Pd dispersion state on the support, has been observed. The modification of the support with Zr^(4+) improves the Lewis/Brφnsted acid ratio of the catalyst, suppressing the further transformation of cyclohexanone. The kinetics of Pd/Zr-Beta catalyst showed high selectivity to cyclohexanone. The catalytic results showed that the Pd/Zr-Beta had the best catalytic performance at the desired temperature of 80℃ for 5 h.
基金financial supports from the National Key R&D Program(2016YFB0301503)the National Natural Science Foundation of China(21776127,21921006)+2 种基金the Jiangsu Province Key R&D Program(BE2018009-2)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201902)。
文摘Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.
基金The financial supports from the National Natural Science Foundation(21776127,21921006)the Jiangsu Province Key R&D Program(BE2018009-2)+3 种基金the Jiangsu Province natural science research of College and university general project(20KJB540003)a project funded by the priority academic program development of Jiangsu higher education institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201902)the outstanding young teacher’s project of Changzhou Vocational Institute of Textile and Garment of China。
文摘Phenol hydrogenation is a green route to prepare cyclohexanone,an intermediate for the production of nylon 66 and nylon 6.The development of high-performance catalysts still keeps a great challenge.Herein,the activated carbon(AC)was modified with an acidic material Nb_(2)O_(5)to adjust the microstructure and surface properties of AC,and the influences of the calcination temperature and Nb_(2)O_(5)content on the catalytic performance of the Pd/AC-Nb_(2)O_(5)catalysts for the phenol hydrogenation to cyclohexanone were investigated.The Nb_(2)O_(5)with proper content can be highly uniformly distributed on the AC surface,enhancing the acidity of the Pd/AC-Nb_(2)O_(5)catalysts with comparable specific surface area and Pd dispersion,thereby improving the catalytic activity.The hybrid Pd/AC-10 Nb_(2)O_(5)-500 catalyst exhibits the synergistic effect between the Pd nanoparticles and AC-10 Nb_(2)O_(5),which enhances the catalytic activity for the hydrogenation of phenol.Furthermore,the as-prepared Pd/AC-10 Nb_(2)O_(5)-500 catalyst shows good reusability during 7 reaction cycles.
文摘A natural polymer catalyst, silica-supported chitosan palladium complex (abbr. as SiO2-CS-Pd) was found to catalyze the hydrogenation of phenol and cresols to corresponding cyclohexanones in high yield and 100% selectivity at 70 degrees C and 1.01325 x 10(5) Pa mild conditions. N/Pd molar ratio in the complex, temperature and solvents have much influence on the reaction. The reactivity order of reactants was found to be: phenol >m->p->o- The catalyst is stable during the reaction and could be repeatedly used for several times without much decrease in its catalytic activity.
基金This work was supported by Financial support from the National Natural Science Foundation of China(21908189,21872121)the National Key R&D Program of China(2016YFA0202900)+1 种基金the Key Program supportedby theNaturalScience Foundationof ZhejiangProvince,China(LZ18B060002)the Key R&D Project of Zhejiang Province(2020C01133).
文摘Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism.This work tries to unravel the mechanism of phenol hydro-genation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions.Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions.The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hy-drogenation,in which two factors are found to be responsible,i.e.the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone,if the specific co-catalyzing effect of H 2 O on Ru is not considered.Based on the above results,a quantitative descriptor,E b(one/pl)/E a,in which E a can be further correlated to the d band center of the noble metal catalyst,is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening.
基金supported by the National Natural Science Foundation of China (21622308)Key Program Supported by the Natural Science Foundation of Zhejiang Province, China (LZ18B060002)the Fundamental Research Funds for the Central Universities (2017XZZX002-16)~~
文摘The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous reaction conditions.Here,we found that the presence of Na alkaline additives(NaX,X=CO3^2–,HCO^3–,or OH^–)on Pd/Al2O3 not only promoted the phenol conversion from 8.3%to>99%but also increased the cyclohexanone selectivity from 89%to>97%during the continuous hydrogenation of phenol on a fixed bed reactor.After 1200 h of continuous reaction,no activity or selectivity attenuation was observed and the turnover number was approximately 2.9×10^5.Density functional theory calculations,spectroscopic,and dynamics studies demonstrated that the addition of NaX greatly promoted phenol adsorption and hydrogen activation,thereby improving catalytic activity.Simultaneously,the formation of a“-C=O-Na-”intermediate inhibited the excessive hydrogenation and intermolecular coupling of cyclohexanone,leading to high selectivity.
文摘A new kind of inorganic polymer, viz, silica-supported polytitazane (Ti-N), and its platinum complex (Ti-N-Pt) were prepared. Cyclohexanone can be obtained in a maximum yield of about 62.2% in the hydrogenation of phenol over Ti-N-Pt at room temperature under atmospheric pressure. The effects of mole ratio of N/Pt in the complex, concentration of the catalyst and reaction temperature on the catalytic activity and selectivity have been studied. The complex can be reused several times without loss in its catalytic activity.
基金the financial supports granted by the National Natural Science Foundation of China (No. 21174155)
文摘Pd/TiN nanocomposite catalysts were fabricated for one-step selective hydrogenation of phenol to cyclohexanone successfully. High conversion of phenol (99%) and selectivity of cyclohexanone (98%) were obtained at 30 ℃ and 0.2 MPa H2 for 12 h in the mixed solvents of H20 and CH2C12. The Pd nanoparticles were stable in the reaction, and no aggregation was detected after four successive runs. The catalytic activity and selectivity depended on slightly the Pd particle sizes. The generality of the catalysts for this reaction was demonstrated by the selective hydrogenation of phenol derivatives, which showed that the catalyst was selective for the formation of cyclohexanone.