This paper describes a realizable fabrication method to manufacture chemical gas sensors by using singlewalled carbon nanotubes(SWCNTs).The sensors were tested for the monitoring of SF_6 decomposition gas produced by ...This paper describes a realizable fabrication method to manufacture chemical gas sensors by using singlewalled carbon nanotubes(SWCNTs).The sensors were tested for the monitoring of SF_6 decomposition gas produced by partial discharge(PD) in GIS tank.The results showed a superior sensitivity,favorable reliability and good reproducibility. For further clarifying the relativity between sensor response and partial discharge activity,the discharge in GIS tank was monitored simultaneously through conventional pulse current method and a SWCNTs gas sensor,and the measurement results were put together for comparative analysis in this paper.The sensor response showed a great dependence on partial discharge characteristics.The sensor response increased nearly linearly with limits when the energy of discharge was persistently accumulated.Partial discharge power had a great influence on the response rate and the time delay.With the increase of partial discharge power,the response rate augmented almost in proportion while the time delay gradually becomes shorter with limits.The results were quite favorable to assess the partial discharge intensity and duration to some extent.Compared with pulse current method,the sensor was predominant to detect partial discharge exposed to constantly high levels of noise.It was capable of detecting partial discharge which was too weak to be detected with pulse current method.However,the sensor response didn't show much dependency on the apparent discharge of partial discharge.展开更多
Different methods of calibrating ultra high frequency(UHF) sensors for gas-insulated substations(GIS) were investigated in the past.The first approach was to use strip lines,triplates and TEM calibration cells.These c...Different methods of calibrating ultra high frequency(UHF) sensors for gas-insulated substations(GIS) were investigated in the past.The first approach was to use strip lines,triplates and TEM calibration cells.These cells had already been in use for years for example to test the electromagnetic compatibility of electronic devices.The smaller the size of the cell,the higher its bandwidth-but the cell should be large enough to not disturb the electric field with the installed sensor under test.To overcome this problem,a calibration procedure using a gigahertz transverse electromagnetic (GTEM) test cell and a pulsed signal source were introduced in 1997.Although this procedure has many advantages and is easy to understand,measurements show several shortcomings of this calibration method.To overcome the disadvantages of the known systems,a calibration cell using a monopole cone antenna and a metallic ground plane were developed and tested.The UHF sensor was placed in a region with minimum distortion of the electric field due to its installation.Experience shows that the new method for calibrating UHF sensors is necessary in order to overcome the limits in the calibration of large sensors and to suppress the propagation of higher order modes and reflections.Due to its surprisingly simple structure,its low price and low overall measurement uncertainty,it is the preferred method for calibrating UHF sensors for GIS applications.展开更多
The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear re...The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear relation to the three phase voltages. This linear relation is presented with a factorial matrix. Because each capacitive sensor is coupled with the electric field of three phases (A, B, and C), the electric coupling coefficients are introduced. In order to determine the matrix of electric coupling coefficients, the numerical calculation method can be used. From the discussion on two types of three-phase enclosed GIS bus, i.e. standard arrangement and biased arrangement, the dominant electric coupling coefficients are named, which can be simply and approximately calculated by an analytic expression. Finally, as an example, the waveforms of VFT phase voltage generated on a three-phase enclosed GIS bus model are displayed. When a capacitive sensor is located at the ’shortest point’ of phase A (or B, or C), the VFT phase voltage V A (or V B, or V C) can almost be measured by that capacitive sensor alone.展开更多
Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient over...Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient overvoltage(VFTO)increases caused by a rise in voltage levels can lead to GIS insulation failures.In this paper,a generating system of VFTO and standard lightning impulse(LI)is established.The insulation characteristics of SF6 gas with and without insulators under VFTO and standard LI are investigated.Experimental results show that the 50%breakdown voltages of the inhomogeneous electric field rod-plane gap under positive VFTO and standard LI are higher than that under negative VFTO and standard LI.The research shows that the 50%breakdown voltage under VFTO could be lower than that under standard LI at 0.5 MPa for the negative polarity.Moreover,the polarity effect of the insulator without defect is different from that with defect.Similarly,the breakdown voltage of the defective insulator under VFTO could be lower than that under standard LI by 8%.The flashover channel under VFTO is seen as more than that under standard LI.Based on the analysis of discharge images and experimental results,it is concluded that the polarity effect is related to the distortion effect of ion clusters formed by SF6 on the electric field.Additionally,the steepness and front time of impulse plays an important role in the initiation and further development of discharge on insulator surface.Finally,the research shows that different discharge characteristics between VFTO and standard LI may be caused by different wave fronts and oscillation on the tails of the impulses.展开更多
In order to guarantee safe operations, low energy discharge within gas insulated switchgear (GIS) should be detected as soon as possible before they develop severely and cause final breakdown failures. This paper ai...In order to guarantee safe operations, low energy discharge within gas insulated switchgear (GIS) should be detected as soon as possible before they develop severely and cause final breakdown failures. This paper aims to present a GIS discharge diagnosis technique adopting gaseous decompositions. To reach this aim, needle-plate electrode and the sphere-plate electrode with metallic particles on the plate are designed to simulate two kinds of low energy discharge, namely, corona discharge and spark discharge, respectively. After sampling and analyzing the gases, different yields of gaseous by-products under different types of low energy discharge are obtained. Based on the decomposition mechanisms reported by previous researches and the experiment results, it can be concluded that S2OF10, SO2F2 , and SO2 can be used as the characteristic gas to identify low energy discharge; the increment of S2OF10 can indicate the occurrence of low energy discharges while the volume ratio between SO2F2 and SO2 can define the type of low energy discharge.展开更多
One of the fundamental issues in gas insulated substations (GIS) which has destructive effects on GIS equipment is the very fast transient over-voltages (VFTOs). This paper models a 400/230 kV substation in order ...One of the fundamental issues in gas insulated substations (GIS) which has destructive effects on GIS equipment is the very fast transient over-voltages (VFTOs). This paper models a 400/230 kV substation in order to study the effects of VFTO extensively implemen- ted on EMTP-RV. In addition, the application of ferrite rings for suppressing VFTOs is assessed thoroughly. The main advantage of this paper is its new proposed algorithm according to the ferrite ring frequency dependent modeling that is validated with experimental results. This paper examines the effects of three compositions of the ferrite ring on VFTO suppression. Moreover, it estimates the dimension of the ferrite ring based on the SF6 gas insulation withstand and the maximum effect of ferrite rings on VFTO suppression constraint with the COMSOL multiphysics software. Furthermore, it gains VFTO attenuated percentages due to the installation of the ferrite ring in different GIS nodes. Finally, it analyzes the offered VFTO amendment technique in various GIS switching scenarios.展开更多
基金Supported by National Natural Science Foundation of China(50707023)
文摘This paper describes a realizable fabrication method to manufacture chemical gas sensors by using singlewalled carbon nanotubes(SWCNTs).The sensors were tested for the monitoring of SF_6 decomposition gas produced by partial discharge(PD) in GIS tank.The results showed a superior sensitivity,favorable reliability and good reproducibility. For further clarifying the relativity between sensor response and partial discharge activity,the discharge in GIS tank was monitored simultaneously through conventional pulse current method and a SWCNTs gas sensor,and the measurement results were put together for comparative analysis in this paper.The sensor response showed a great dependence on partial discharge characteristics.The sensor response increased nearly linearly with limits when the energy of discharge was persistently accumulated.Partial discharge power had a great influence on the response rate and the time delay.With the increase of partial discharge power,the response rate augmented almost in proportion while the time delay gradually becomes shorter with limits.The results were quite favorable to assess the partial discharge intensity and duration to some extent.Compared with pulse current method,the sensor was predominant to detect partial discharge exposed to constantly high levels of noise.It was capable of detecting partial discharge which was too weak to be detected with pulse current method.However,the sensor response didn't show much dependency on the apparent discharge of partial discharge.
文摘Different methods of calibrating ultra high frequency(UHF) sensors for gas-insulated substations(GIS) were investigated in the past.The first approach was to use strip lines,triplates and TEM calibration cells.These cells had already been in use for years for example to test the electromagnetic compatibility of electronic devices.The smaller the size of the cell,the higher its bandwidth-but the cell should be large enough to not disturb the electric field with the installed sensor under test.To overcome this problem,a calibration procedure using a gigahertz transverse electromagnetic (GTEM) test cell and a pulsed signal source were introduced in 1997.Although this procedure has many advantages and is easy to understand,measurements show several shortcomings of this calibration method.To overcome the disadvantages of the known systems,a calibration cell using a monopole cone antenna and a metallic ground plane were developed and tested.The UHF sensor was placed in a region with minimum distortion of the electric field due to its installation.Experience shows that the new method for calibrating UHF sensors is necessary in order to overcome the limits in the calibration of large sensors and to suppress the propagation of higher order modes and reflections.Due to its surprisingly simple structure,its low price and low overall measurement uncertainty,it is the preferred method for calibrating UHF sensors for GIS applications.
文摘The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear relation to the three phase voltages. This linear relation is presented with a factorial matrix. Because each capacitive sensor is coupled with the electric field of three phases (A, B, and C), the electric coupling coefficients are introduced. In order to determine the matrix of electric coupling coefficients, the numerical calculation method can be used. From the discussion on two types of three-phase enclosed GIS bus, i.e. standard arrangement and biased arrangement, the dominant electric coupling coefficients are named, which can be simply and approximately calculated by an analytic expression. Finally, as an example, the waveforms of VFT phase voltage generated on a three-phase enclosed GIS bus model are displayed. When a capacitive sensor is located at the ’shortest point’ of phase A (or B, or C), the VFT phase voltage V A (or V B, or V C) can almost be measured by that capacitive sensor alone.
基金supported by National Basic Research Program of China(973 Program)and Science and Technology Project of SGCC“Research on the Application of VFTO Key Techniques in Ultra High GIS Substation”(GYB17201400111).
文摘Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient overvoltage(VFTO)increases caused by a rise in voltage levels can lead to GIS insulation failures.In this paper,a generating system of VFTO and standard lightning impulse(LI)is established.The insulation characteristics of SF6 gas with and without insulators under VFTO and standard LI are investigated.Experimental results show that the 50%breakdown voltages of the inhomogeneous electric field rod-plane gap under positive VFTO and standard LI are higher than that under negative VFTO and standard LI.The research shows that the 50%breakdown voltage under VFTO could be lower than that under standard LI at 0.5 MPa for the negative polarity.Moreover,the polarity effect of the insulator without defect is different from that with defect.Similarly,the breakdown voltage of the defective insulator under VFTO could be lower than that under standard LI by 8%.The flashover channel under VFTO is seen as more than that under standard LI.Based on the analysis of discharge images and experimental results,it is concluded that the polarity effect is related to the distortion effect of ion clusters formed by SF6 on the electric field.Additionally,the steepness and front time of impulse plays an important role in the initiation and further development of discharge on insulator surface.Finally,the research shows that different discharge characteristics between VFTO and standard LI may be caused by different wave fronts and oscillation on the tails of the impulses.
基金Supported by the Scotland-China Higher Education Research Partnership for Ph. D. Studies ([2010]6044)
文摘In order to guarantee safe operations, low energy discharge within gas insulated switchgear (GIS) should be detected as soon as possible before they develop severely and cause final breakdown failures. This paper aims to present a GIS discharge diagnosis technique adopting gaseous decompositions. To reach this aim, needle-plate electrode and the sphere-plate electrode with metallic particles on the plate are designed to simulate two kinds of low energy discharge, namely, corona discharge and spark discharge, respectively. After sampling and analyzing the gases, different yields of gaseous by-products under different types of low energy discharge are obtained. Based on the decomposition mechanisms reported by previous researches and the experiment results, it can be concluded that S2OF10, SO2F2 , and SO2 can be used as the characteristic gas to identify low energy discharge; the increment of S2OF10 can indicate the occurrence of low energy discharges while the volume ratio between SO2F2 and SO2 can define the type of low energy discharge.
文摘One of the fundamental issues in gas insulated substations (GIS) which has destructive effects on GIS equipment is the very fast transient over-voltages (VFTOs). This paper models a 400/230 kV substation in order to study the effects of VFTO extensively implemen- ted on EMTP-RV. In addition, the application of ferrite rings for suppressing VFTOs is assessed thoroughly. The main advantage of this paper is its new proposed algorithm according to the ferrite ring frequency dependent modeling that is validated with experimental results. This paper examines the effects of three compositions of the ferrite ring on VFTO suppression. Moreover, it estimates the dimension of the ferrite ring based on the SF6 gas insulation withstand and the maximum effect of ferrite rings on VFTO suppression constraint with the COMSOL multiphysics software. Furthermore, it gains VFTO attenuated percentages due to the installation of the ferrite ring in different GIS nodes. Finally, it analyzes the offered VFTO amendment technique in various GIS switching scenarios.