The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (t...The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (the ratio of the electric field to gas pressure) is obtained, and the velocity profile is asymmetric. The variation of the number density of CH3 and H with different CH4 concentrations and gas pressure is investigated, and the optimal experimental parameters are obtained: the gas pressure is in the range of 2.5 kPa - 15 kPa and the CH4 concentration is in the range of 0.5% - 1%. The energy carried by the fragment CH3 as the function of the experiment parameters is investigated to explain the diamond growth at low temperature. These results will be helpful to the selection of optimum experimental conditions for high quality diamond films deposition in EACVD and the modeling of plasma chemical vapor deposition.展开更多
High quality ultrafine Si powders have been synthesized from SiH4 by laser induced gas phase reaction. The powders prduced under different synthesis conditions have mean particle size of 10-120nm in diam. with narrow ...High quality ultrafine Si powders have been synthesized from SiH4 by laser induced gas phase reaction. The powders prduced under different synthesis conditions have mean particle size of 10-120nm in diam. with narrow particle size distribution, and free of hard agglomerates.The powders are polycrystalline with the ratio of mean grain to particle diameter being between 0.3-0.7. The size of the powder increases with increasing laser power and reaction pressure,but decreases with increasing silane gas flow rate and the addition of Ar diluent. Grain sizes drop distinctly with the rise of the addition of Ar gas and laser power, but change little with the gas flow rate and reaction temperature. The formation of Si particles under different synthesis conditions is discussed展开更多
We have prepared well-resolved Nb^(+)_(n)(n=1-10)clusters and report here an in-depth study on the es-sentially different reactivity with N_(2)and O_(2),by utilizing a multiple-ion laminar flow tube reactor in tandem ...We have prepared well-resolved Nb^(+)_(n)(n=1-10)clusters and report here an in-depth study on the es-sentially different reactivity with N_(2)and O_(2),by utilizing a multiple-ion laminar flow tube reactor in tandem with a customized triple quadrupole mass spectrometer(MIFT-TQMS).As results,the Nb^(+)_(n)clus-ters are found to readily react with N_(2)and form adsorption products Nb_(n)N^(+)_(2m);in contrast,the reactions with O_(2)give rise to Nb_(n)O^(+)_(1−4)products,and the odd-oxygen products indicate O-O bond dissociation,as well as increased mass abundance of NbO^(+)pertaining to oxygen-etching reactions.We illustrate how N_(2) prefers a physical adsorption on Nb^(+)_(n)clusters with an end-on orientation for all the products,and allow for size-selective Nb^(+)_(n)clusters to act as electron donor or acceptor in forming Nb_(n)N^(+)_(2m).In contrast to these nitrides,the dioxides Nb_(n)O+2display much larger binding energies,with O_(2)always as an electron acceptor,corresponding to superoxide or peroxide states in the initial reactions.Density-of-states and orbital anal-yses show that the interactions between Nb^(+)_(n)and O_(2)are dominated by strongπ-backdonation indicative of incidental electron transfer;whereas weakπ-backdonation and simultaneousσdonation interactions exist in Nb_(n)N^(+)_(2).Further,reaction dynamics analysis illustrates the different interactions for N_(2)and O_(2) in approaching the Nb^(+)_(n)clusters,showing the energy diagrams for N_(2)adsorption and O-O bond dissoci-ation in producing odd-oxygen products.Fragment analyses with orbital correlation and donor-acceptor charge transfer are also performed,giving rise to full insights into the reactivities and interactions of such transition metal clusters with typical diatomic molecules.展开更多
基金The project supported by the Nature Science Foundation of Hebei Province, China (No 502121)
文摘The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (the ratio of the electric field to gas pressure) is obtained, and the velocity profile is asymmetric. The variation of the number density of CH3 and H with different CH4 concentrations and gas pressure is investigated, and the optimal experimental parameters are obtained: the gas pressure is in the range of 2.5 kPa - 15 kPa and the CH4 concentration is in the range of 0.5% - 1%. The energy carried by the fragment CH3 as the function of the experiment parameters is investigated to explain the diamond growth at low temperature. These results will be helpful to the selection of optimum experimental conditions for high quality diamond films deposition in EACVD and the modeling of plasma chemical vapor deposition.
文摘High quality ultrafine Si powders have been synthesized from SiH4 by laser induced gas phase reaction. The powders prduced under different synthesis conditions have mean particle size of 10-120nm in diam. with narrow particle size distribution, and free of hard agglomerates.The powders are polycrystalline with the ratio of mean grain to particle diameter being between 0.3-0.7. The size of the powder increases with increasing laser power and reaction pressure,but decreases with increasing silane gas flow rate and the addition of Ar diluent. Grain sizes drop distinctly with the rise of the addition of Ar gas and laser power, but change little with the gas flow rate and reaction temperature. The formation of Si particles under different synthesis conditions is discussed
基金financially supported by the CAS Instrument Development Project (No.Y5294512C1)the National Natural Science Foundation of China (No.21722308)Key Research Program of Frontier Sciences (CAS No.QYZDBSSWSLH024)。
文摘We have prepared well-resolved Nb^(+)_(n)(n=1-10)clusters and report here an in-depth study on the es-sentially different reactivity with N_(2)and O_(2),by utilizing a multiple-ion laminar flow tube reactor in tandem with a customized triple quadrupole mass spectrometer(MIFT-TQMS).As results,the Nb^(+)_(n)clus-ters are found to readily react with N_(2)and form adsorption products Nb_(n)N^(+)_(2m);in contrast,the reactions with O_(2)give rise to Nb_(n)O^(+)_(1−4)products,and the odd-oxygen products indicate O-O bond dissociation,as well as increased mass abundance of NbO^(+)pertaining to oxygen-etching reactions.We illustrate how N_(2) prefers a physical adsorption on Nb^(+)_(n)clusters with an end-on orientation for all the products,and allow for size-selective Nb^(+)_(n)clusters to act as electron donor or acceptor in forming Nb_(n)N^(+)_(2m).In contrast to these nitrides,the dioxides Nb_(n)O+2display much larger binding energies,with O_(2)always as an electron acceptor,corresponding to superoxide or peroxide states in the initial reactions.Density-of-states and orbital anal-yses show that the interactions between Nb^(+)_(n)and O_(2)are dominated by strongπ-backdonation indicative of incidental electron transfer;whereas weakπ-backdonation and simultaneousσdonation interactions exist in Nb_(n)N^(+)_(2).Further,reaction dynamics analysis illustrates the different interactions for N_(2)and O_(2) in approaching the Nb^(+)_(n)clusters,showing the energy diagrams for N_(2)adsorption and O-O bond dissoci-ation in producing odd-oxygen products.Fragment analyses with orbital correlation and donor-acceptor charge transfer are also performed,giving rise to full insights into the reactivities and interactions of such transition metal clusters with typical diatomic molecules.