During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between ...During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.展开更多
As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward ...As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward holes to roof strata in tailgate or drilling inseam and cross-measure boreholes, could not meet methane drainage requirements in a gassy mine. The alternative is to drill boreholes from surface down to the Iongwall goaf area to drain the gas out. As soon as a coal seam is extracted out, the upper rock strata above the goaf start to collapse or become fractured depending upon the rock characteristics and the height above the coal seam. During overlying rock strata being fractured, boreholes in the area may be damaged due to ground movement after the passage of the Iongwall face. The sudden damage of a borehole may cause a Iongwall production halt or even a serious mine accident. A theoretical calculation of the stability of surface boreholes in mining affected area is introduced along with an example of determination of borehole and casing diameters is given for demonstration. By using this method for the drilling design, the damage of surface boreholes caused by excessive mining induced displacement can be effectively reduced if not totally avoided. Borehole and casing diameters as well as characteristics of filling materials can be determined using the proposed method by calculating the horizontal movement and vertical stain at different borehole depths.展开更多
Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. ...Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.展开更多
Borehole leakage not only affects the gas drainage effect but also presents considerable risk to human security. For the research on the leakage mechanism of gas drainage borehole, the rheological and visco-elastic-pl...Borehole leakage not only affects the gas drainage effect but also presents considerable risk to human security. For the research on the leakage mechanism of gas drainage borehole, the rheological and visco-elastic-plastic characteristics were considered to establish the mechanical model of coal mass around borehole, which is used to analyze the leakage mechanism and deduce the dynamic leakage model. On the basis of the real coal seam conditions, the variation rules of the stress, leakage ring, and air leakage amount were analyzed through numerical simulation, and the influence factors of air leakage amount were also investigated to provide the theoretical basis for the sealing technology. Results show that the air leakage amount of borehole is inversely proportional to the increase in supporting stress and sealing length, and directly correlated with the increase in borehole radius and softening modulus. Using theoretical analysis, we design a novel active supporting sealing technology that can use grouting material to seal the fractures to reduce the leakage channels and also provide supporting stress to prevent borehole deformation. The engineering test results indicate that the average gas concentration with the novel active supporting sealing technology is increased by 162.12% than that of traditional polyurethane sealing method. Therefore, this technology not only effectively resolves borehole leakage but also significantly improves the gas drainage effect.展开更多
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic moni...Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic monitoring were simultaneously conducted in the Eyangye 2HF well(hereinafter referred to as EYY2HF well).The target stratum of this well is the second member of the Doushantuo Formation of the Sinian System,which is the oldest stratum of horizontal shale gas wells in the world.A total of 4341 microseismic fracturing events were identified,and 23 fracturing stages of the well were defined.The fluctuation of the number of events showed a repeating“high-low”pattern,and the average energy of these events showed minimal differences.These findings indicate that the water pressure required for the reconstruction of the EYY2HF well is appropriate.The main body of the fracture network extended from northwest to southeast,consistent with the interpretation of regional geological and seismic data.The stimulated rock volumes showed a linear increase with the increase of the fracturing stage.Some technological measures,such as quick lift displacement,quick lift sand ratio,and pump stop for secondary sand addition,were adopted during fracturing to increase the complexity of the fracture network.Microseismic fracture monitoring of the well achieved expected eff ects and guided real-time fracturing operations and fracturing eff ect evaluation.展开更多
The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,boreh...The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation.展开更多
In order to study the influence of a fault on the movement law of the overlying strata as well as its effect on the gas drainage boreholes, based on the practical situation of 1242(1) panel at Xieqiao Mine in Huaina...In order to study the influence of a fault on the movement law of the overlying strata as well as its effect on the gas drainage boreholes, based on the practical situation of 1242(1) panel at Xieqiao Mine in Huainan, the Finite Element Method (FEM) model was built up, and the distribution of the stress field and the displacement field of the overlying strata in the stope with a fault were simulated by using the FEM software ANSYS. The results indicate that because of the existence of the fault, the horizontal displacement of overlying strata near the gas drainage borehole becomes larger than that in the stope without a fault, and the distribution of the stress field of the overlying strata changes greatly. When the working face is far away from the fault, the distribution of the stress field is approximately symmetrical. As the working face advances to the place 50 m away from the fault, the stress range at the right side goaf area is as twice as that at the left side. Here, the stress distribution area of goaf area and the fault plane run through, the fracture-connected-zone is formed. It can be presumed that the gas adsorbed in the coal and rock will flow into the fault zone along the fracture-connected-zone, which causes the quantity of gas drainage reduce remarkably.展开更多
Gob ventilation boreholes(GVBs)are widely used for degasification in U.S.longwall coal mines.Depending on geological conditions,30–50%of methane can be recovered from longwall gob using GVBs.A NIOSH funded research a...Gob ventilation boreholes(GVBs)are widely used for degasification in U.S.longwall coal mines.Depending on geological conditions,30–50%of methane can be recovered from longwall gob using GVBs.A NIOSH funded research at the Colorado School of Mines confirmed that GVBs can efficiently reduce methane at the face.However,GVBs can also draw some fresh air from the face and create explosive gas zones(EGZs).Explosive gas mixtures may be formed in gob areas due to the increased ingress of oxygen from GVBs.It is critical to identify the locations for GVBs for maximizing extraction of methane and minimizing hazards of explosion.This study analyzes the effect of operating parameters and design of GVB on methane extraction,EGZs formation,and face and tailgate methane concentrations.Methane extraction,formation of EGZs,and concentration of methane in working areas are significantly impacted by various factors.These factors include the distance of work face and tailgate from GVBs,diameter of GVBs,vacuum pressure of wellhead,GVB distance from the roof of the coal seam,and number of operating GVBs in a panel.Computational fluid dynamics(CFD)evaluations suggest optimal design and operating parameters of GVBs that can contribute to maximum benefits with minimum risks.展开更多
Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and de...Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and development objectives,as well as the novel application contexts of underground reservoirs,have led to increasingly demanding requirements on borehole NMR technology including instrument design and related processing methods.This mini review summarizes the advances and applications of borehole NMR instruments along with some future possibilities.It may be helpful for researchers and engineers in the petroleum industry to understand the development status and future trends of borehole NMR technology.展开更多
The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase...The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage.Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage.In this paper,based on the strain-softening model,the stress and permeability model of the coal seam around the enlarged borehole was built,and based on the dual-medium model,the gas migration model in the coal seam was established.Then the borehole enlargement gas drainage engineering of E9/10 coal seam in Pingdingshan No.8 coal mine was simulated by using COMSOL Multiphysics software.The distribution of stress and permeability in the coal seam around a borehole was analyzed,and the reasonable borehole radius of 0.25 m and reasonable borehole spacing of 6 m were determined.Finally,in Pingdingshan No.8 coal mine,field application was carried out in E9/10 coal seam-21070 working face from the high-level gas drainage roadway.The results show that the actual average coal slag discharge rate is 77.82%,which achieved borehole enlargement.The natural gas flow rate from an enlarged borehole is 2.3–7.3 times that of a normal borehole,and the influence range of enlarged boreholes is more than 6 m.The average gas drainage concentration of a group of enlarged boreholes is about 42%,and the average gas drainage amount is about 0.53 m3/min.After two months of gas extraction,the outburst risk in this area was eliminated,which provides a guarantee for safe coal mining.展开更多
Horizontal boreholes have been widely used to extract natural gas from coal seams.However,these boreholes can encounter severe instability issues leading to production interruption.Optimizing drilling azimuth is a pot...Horizontal boreholes have been widely used to extract natural gas from coal seams.However,these boreholes can encounter severe instability issues leading to production interruption.Optimizing drilling azimuth is a potential solution for enhancing borehole stability while considering gas production.In this work,we improved and implemented a dual-porosity,fully coupled geomechanical-hydraulic numerical model into COMSOL Multiphysics to investigate into this factor.The sophisticated numerical model incorporates various critical factors,including desorption-induced matrix shrinkage,stress-dependent anisotropic fracture permeability,and the interactions of gas flow and reservoir deformation in matrices and fractures.A suite of simulation scenarios(e.g.,varying coal strength)was carried out to quantify the impact of drilling azimuth on coal permeability evolution,cumulative gas production,and the borehole break-out width for Goonyella Middle Seam of Bowen Basin,Australia.The model was calibrated against both theoretical permeability values and field gas production data.Due to the lack of directly measured matrix permeability data,the actual gas production was used to back calculate the best-matched matrix permeability,which is 0.65μD for this particular work.Moreover,based on the breakout shape and induced volumetric strains around the borehole,drilling along the maximum horizontal stress does not necessarily lead to the best stability of the borehole,as generally believed.A drilling azimuth between 0and 60results in similar breakout width,whereas a drilling azimuth between 60and 90achieves the most efficient gas production.By considering both gas production efficiency and borehole stability,for this particular reservoir condition,the optimum drilling azimuth is determined to be between 45and 60.This study presents a practical approach for determining the optimum drilling azimuth in coal seam gas extraction through in seam boreholes.展开更多
China's rapid economic development has increased the demand for coal.These results in Chinese coal mines being extended to deeper levels.The eastern Chinese,more economical developed,regions have a long history of...China's rapid economic development has increased the demand for coal.These results in Chinese coal mines being extended to deeper levels.The eastern Chinese,more economical developed,regions have a long history of coal mining and many coal mines have now started deep mining at a depth from 800 to 1500 m.This increase in mining depth,geostresses,pressures,and gas content of the coal seam complicates geologic construction conditions.Lower permeability and softer coal contribute to increasing numbers of coal and gas outburst,and gas explosion,disasters.A search on effective methods of preventing gas disasters has been provided funds from the Chinese government since 1998.The National Engineering Research Center of Coal Gas Control and the Huainan and Huaibei Mining Group have conducted theoretical and experimental research on a regional gas extraction technology.The results included two important findings.First,grouped coal seams allow adoption of a method where a first,key protective layer is mined to protect upper and lower coal seams by increasing permeability from 400 to 3000 times.Desorption of gas and gas extraction in the protected coal seam of up to 60%,or more,may be achieved in this way.Second,a single seam may be protected by using a dense network of extraction boreholes consisting of cross and along-bed holes.Combined with this is increased use of water that increases extraction of coal seam gas by up to 50%.Engineering practice showed that regional gas drainage technology eliminates regional coal and gas outburst and also enables mining under low gas conditions.These research results have been adopted into the national safety codes of production technology.This paper systematically introduces the principles of the technology,the engineering methods and techniques,and the parameters of regional gas drainage.Engineering applications are discussed.展开更多
When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stra...When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.展开更多
Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This st...Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams.展开更多
Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep...Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep coal mines are hard to maintain, especially for constructing boreholes in confined spaces, owing to major deformations. Consequently, it is difficult to drill boreholes and maintain their stability, which therefore cannot guarantee the effectiveness of gas drainage. This paper presents three measures for conducting CECGWEP in deep mines on the basis of effective space in retained entryways for gas drainage, They are combinations of retaining roadways and face-lagging inclined boreholes, retaining roadways and face-advancing inclined boreholes, and retaining roadways and high return airway inclined boreholes. Several essential techniques are suggested to improve the maintenance of retained entryways and the stabilization of boreholes. For the particular cases considered in this study, two field trials have verified the latter two measures from the results obtained from the faces 1111(1) and 11112(1) in the Zhuji Mine. The results indicate that these models can effectively solve the problems in deep mines. The maximum gas drainage flow for a single hole can reach 8.1 m^3/min and the effective drainage distance can be extended up to 150 m or more.展开更多
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the pa...To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.展开更多
Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep le...Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability.展开更多
Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coa...Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.展开更多
To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture devel...To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture development of floor coal-rock mass of the protective seam and migration rule of pressure-relief gas from a protected seam so as to obtain an effective pressure- relief gas extraction method.The results show that after the upper protective seam was mined,mining-induced fracturing floor coal-rock mas...展开更多
文摘During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.
文摘As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward holes to roof strata in tailgate or drilling inseam and cross-measure boreholes, could not meet methane drainage requirements in a gassy mine. The alternative is to drill boreholes from surface down to the Iongwall goaf area to drain the gas out. As soon as a coal seam is extracted out, the upper rock strata above the goaf start to collapse or become fractured depending upon the rock characteristics and the height above the coal seam. During overlying rock strata being fractured, boreholes in the area may be damaged due to ground movement after the passage of the Iongwall face. The sudden damage of a borehole may cause a Iongwall production halt or even a serious mine accident. A theoretical calculation of the stability of surface boreholes in mining affected area is introduced along with an example of determination of borehole and casing diameters is given for demonstration. By using this method for the drilling design, the damage of surface boreholes caused by excessive mining induced displacement can be effectively reduced if not totally avoided. Borehole and casing diameters as well as characteristics of filling materials can be determined using the proposed method by calculating the horizontal movement and vertical stain at different borehole depths.
基金financial support of Distinguished scholars of yueqi (NO. 800015Z1179)National Science Fund subsidized project (51474220)Basic scientific research project of the CPC Central Committee (NO. 2009QZ03)
文摘Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.
基金supported by the National Natural Science Foundation of Youth Science Fund Project of China (No. 51604096)Funded by Hebei State Key Laboratory of Mine Disaster Prevention of China (No. KJZH2017K08)+1 种基金Funded by the Research Fund of State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines (Henan Polytechnic University) of China (No. G201609)He Nan Research Program of Application Foundation and Advanced Technology of China (No. 162300410031)
文摘Borehole leakage not only affects the gas drainage effect but also presents considerable risk to human security. For the research on the leakage mechanism of gas drainage borehole, the rheological and visco-elastic-plastic characteristics were considered to establish the mechanical model of coal mass around borehole, which is used to analyze the leakage mechanism and deduce the dynamic leakage model. On the basis of the real coal seam conditions, the variation rules of the stress, leakage ring, and air leakage amount were analyzed through numerical simulation, and the influence factors of air leakage amount were also investigated to provide the theoretical basis for the sealing technology. Results show that the air leakage amount of borehole is inversely proportional to the increase in supporting stress and sealing length, and directly correlated with the increase in borehole radius and softening modulus. Using theoretical analysis, we design a novel active supporting sealing technology that can use grouting material to seal the fractures to reduce the leakage channels and also provide supporting stress to prevent borehole deformation. The engineering test results indicate that the average gas concentration with the novel active supporting sealing technology is increased by 162.12% than that of traditional polyurethane sealing method. Therefore, this technology not only effectively resolves borehole leakage but also significantly improves the gas drainage effect.
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
基金National key R&D plan(2016YFC060110605)National major projects(2016ZX05034004-005)。
文摘Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic monitoring were simultaneously conducted in the Eyangye 2HF well(hereinafter referred to as EYY2HF well).The target stratum of this well is the second member of the Doushantuo Formation of the Sinian System,which is the oldest stratum of horizontal shale gas wells in the world.A total of 4341 microseismic fracturing events were identified,and 23 fracturing stages of the well were defined.The fluctuation of the number of events showed a repeating“high-low”pattern,and the average energy of these events showed minimal differences.These findings indicate that the water pressure required for the reconstruction of the EYY2HF well is appropriate.The main body of the fracture network extended from northwest to southeast,consistent with the interpretation of regional geological and seismic data.The stimulated rock volumes showed a linear increase with the increase of the fracturing stage.Some technological measures,such as quick lift displacement,quick lift sand ratio,and pump stop for secondary sand addition,were adopted during fracturing to increase the complexity of the fracture network.Microseismic fracture monitoring of the well achieved expected eff ects and guided real-time fracturing operations and fracturing eff ect evaluation.
文摘The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation.
基金Supported by the National Natural Science Foundation of China(50534080) the National Basic Research Program of China(2005CB221504) Taishan Scholar Engineering Construction Foundation of Shandong Province
文摘In order to study the influence of a fault on the movement law of the overlying strata as well as its effect on the gas drainage boreholes, based on the practical situation of 1242(1) panel at Xieqiao Mine in Huainan, the Finite Element Method (FEM) model was built up, and the distribution of the stress field and the displacement field of the overlying strata in the stope with a fault were simulated by using the FEM software ANSYS. The results indicate that because of the existence of the fault, the horizontal displacement of overlying strata near the gas drainage borehole becomes larger than that in the stope without a fault, and the distribution of the stress field of the overlying strata changes greatly. When the working face is far away from the fault, the distribution of the stress field is approximately symmetrical. As the working face advances to the place 50 m away from the fault, the stress range at the right side goaf area is as twice as that at the left side. Here, the stress distribution area of goaf area and the fault plane run through, the fracture-connected-zone is formed. It can be presumed that the gas adsorbed in the coal and rock will flow into the fault zone along the fracture-connected-zone, which causes the quantity of gas drainage reduce remarkably.
基金the Colorado School of Mines thankfully acknowledges all financial support from the NIOSH under contract number[200-2009-31409]。
文摘Gob ventilation boreholes(GVBs)are widely used for degasification in U.S.longwall coal mines.Depending on geological conditions,30–50%of methane can be recovered from longwall gob using GVBs.A NIOSH funded research at the Colorado School of Mines confirmed that GVBs can efficiently reduce methane at the face.However,GVBs can also draw some fresh air from the face and create explosive gas zones(EGZs).Explosive gas mixtures may be formed in gob areas due to the increased ingress of oxygen from GVBs.It is critical to identify the locations for GVBs for maximizing extraction of methane and minimizing hazards of explosion.This study analyzes the effect of operating parameters and design of GVB on methane extraction,EGZs formation,and face and tailgate methane concentrations.Methane extraction,formation of EGZs,and concentration of methane in working areas are significantly impacted by various factors.These factors include the distance of work face and tailgate from GVBs,diameter of GVBs,vacuum pressure of wellhead,GVB distance from the roof of the coal seam,and number of operating GVBs in a panel.Computational fluid dynamics(CFD)evaluations suggest optimal design and operating parameters of GVBs that can contribute to maximum benefits with minimum risks.
基金“The Strategic Cooperation Technology Projects of CNPC and CUP(Grant Number ZLZX2020-03)”“China Postdoctoral Science Foundation(Grant Number 2021M700172)”.
文摘Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and development objectives,as well as the novel application contexts of underground reservoirs,have led to increasingly demanding requirements on borehole NMR technology including instrument design and related processing methods.This mini review summarizes the advances and applications of borehole NMR instruments along with some future possibilities.It may be helpful for researchers and engineers in the petroleum industry to understand the development status and future trends of borehole NMR technology.
基金supported by the Assistance Program for Future Outstanding Talents of China University of Mining and Technology(No.2020WLJCRCZL041)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX20_0816).
文摘The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage.Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage.In this paper,based on the strain-softening model,the stress and permeability model of the coal seam around the enlarged borehole was built,and based on the dual-medium model,the gas migration model in the coal seam was established.Then the borehole enlargement gas drainage engineering of E9/10 coal seam in Pingdingshan No.8 coal mine was simulated by using COMSOL Multiphysics software.The distribution of stress and permeability in the coal seam around a borehole was analyzed,and the reasonable borehole radius of 0.25 m and reasonable borehole spacing of 6 m were determined.Finally,in Pingdingshan No.8 coal mine,field application was carried out in E9/10 coal seam-21070 working face from the high-level gas drainage roadway.The results show that the actual average coal slag discharge rate is 77.82%,which achieved borehole enlargement.The natural gas flow rate from an enlarged borehole is 2.3–7.3 times that of a normal borehole,and the influence range of enlarged boreholes is more than 6 m.The average gas drainage concentration of a group of enlarged boreholes is about 42%,and the average gas drainage amount is about 0.53 m3/min.After two months of gas extraction,the outburst risk in this area was eliminated,which provides a guarantee for safe coal mining.
文摘Horizontal boreholes have been widely used to extract natural gas from coal seams.However,these boreholes can encounter severe instability issues leading to production interruption.Optimizing drilling azimuth is a potential solution for enhancing borehole stability while considering gas production.In this work,we improved and implemented a dual-porosity,fully coupled geomechanical-hydraulic numerical model into COMSOL Multiphysics to investigate into this factor.The sophisticated numerical model incorporates various critical factors,including desorption-induced matrix shrinkage,stress-dependent anisotropic fracture permeability,and the interactions of gas flow and reservoir deformation in matrices and fractures.A suite of simulation scenarios(e.g.,varying coal strength)was carried out to quantify the impact of drilling azimuth on coal permeability evolution,cumulative gas production,and the borehole break-out width for Goonyella Middle Seam of Bowen Basin,Australia.The model was calibrated against both theoretical permeability values and field gas production data.Due to the lack of directly measured matrix permeability data,the actual gas production was used to back calculate the best-matched matrix permeability,which is 0.65μD for this particular work.Moreover,based on the breakout shape and induced volumetric strains around the borehole,drilling along the maximum horizontal stress does not necessarily lead to the best stability of the borehole,as generally believed.A drilling azimuth between 0and 60results in similar breakout width,whereas a drilling azimuth between 60and 90achieves the most efficient gas production.By considering both gas production efficiency and borehole stability,for this particular reservoir condition,the optimum drilling azimuth is determined to be between 45and 60.This study presents a practical approach for determining the optimum drilling azimuth in coal seam gas extraction through in seam boreholes.
基金the State Key Basic Research Program of China(No.2011CB201204)the National Natural Science Foundation of China(Nos.51074160 and 50904068)
文摘China's rapid economic development has increased the demand for coal.These results in Chinese coal mines being extended to deeper levels.The eastern Chinese,more economical developed,regions have a long history of coal mining and many coal mines have now started deep mining at a depth from 800 to 1500 m.This increase in mining depth,geostresses,pressures,and gas content of the coal seam complicates geologic construction conditions.Lower permeability and softer coal contribute to increasing numbers of coal and gas outburst,and gas explosion,disasters.A search on effective methods of preventing gas disasters has been provided funds from the Chinese government since 1998.The National Engineering Research Center of Coal Gas Control and the Huainan and Huaibei Mining Group have conducted theoretical and experimental research on a regional gas extraction technology.The results included two important findings.First,grouped coal seams allow adoption of a method where a first,key protective layer is mined to protect upper and lower coal seams by increasing permeability from 400 to 3000 times.Desorption of gas and gas extraction in the protected coal seam of up to 60%,or more,may be achieved in this way.Second,a single seam may be protected by using a dense network of extraction boreholes consisting of cross and along-bed holes.Combined with this is increased use of water that increases extraction of coal seam gas by up to 50%.Engineering practice showed that regional gas drainage technology eliminates regional coal and gas outburst and also enables mining under low gas conditions.These research results have been adopted into the national safety codes of production technology.This paper systematically introduces the principles of the technology,the engineering methods and techniques,and the parameters of regional gas drainage.Engineering applications are discussed.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth 5-Year Key Scientific and Technological Project
文摘When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.
基金provided by the National Science and Technology Major Project (No. 2016ZX05043-005)
文摘Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams.
基金Acknowledgments The research was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT_I4R55), and the National Natural Science Foundation of China under Grant No. NSFC-51274193.
文摘Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep coal mines are hard to maintain, especially for constructing boreholes in confined spaces, owing to major deformations. Consequently, it is difficult to drill boreholes and maintain their stability, which therefore cannot guarantee the effectiveness of gas drainage. This paper presents three measures for conducting CECGWEP in deep mines on the basis of effective space in retained entryways for gas drainage, They are combinations of retaining roadways and face-lagging inclined boreholes, retaining roadways and face-advancing inclined boreholes, and retaining roadways and high return airway inclined boreholes. Several essential techniques are suggested to improve the maintenance of retained entryways and the stabilization of boreholes. For the particular cases considered in this study, two field trials have verified the latter two measures from the results obtained from the faces 1111(1) and 11112(1) in the Zhuji Mine. The results indicate that these models can effectively solve the problems in deep mines. The maximum gas drainage flow for a single hole can reach 8.1 m^3/min and the effective drainage distance can be extended up to 150 m or more.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.51327007,51104118 and51204134)Shaanxi Province Youth Science and Technology Star Project of China(2014KJXX69)
文摘To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.
文摘Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability.
基金the Department of Industry and Science,Australian Government for funding this researchthe management and staff of Glencore Bulga Underground Operations for their significant contributions in this project
文摘Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.
基金Funded by the Major State Basic Research Development Program of China(No.2005CB221503)the Key Program of the Natural Science Foundation of China(No.70533050,50904068 and 50674089)
文摘To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture development of floor coal-rock mass of the protective seam and migration rule of pressure-relief gas from a protected seam so as to obtain an effective pressure- relief gas extraction method.The results show that after the upper protective seam was mined,mining-induced fracturing floor coal-rock mas...