Two-dimensional layered aluminum-based adsorbents have been developed and successfully applied to enrich low-concentration lithium from shale gas produced water.The adsorbent,synthesized with a lithium-to-aluminum mol...Two-dimensional layered aluminum-based adsorbents have been developed and successfully applied to enrich low-concentration lithium from shale gas produced water.The adsorbent,synthesized with a lithium-to-aluminum molar ratio of 0.6 in the salt solution,demonstrated exceptional performance characteristics.Its structure,featuring nano-encapsulated layers,facilitated lithium insertion,enhanced the surface area,and optimized pore size distribution for efficient adsorption.The adsorption equilibrium was reached within 60 min,closely aligning with the pseudo-second-order model.The isotherm analysis,based on the Sips model,suggested a nonhomogeneous multilayer adsorption process.Additionally,the adsorbent showed exceptional selectivity for Li^(+)over Na^(+),Ca^(2+),and Mg^(2+),ensuring effective lithium enrichment.Further desorption studies indicated that optimal conditions involved using deionized water at 333 K with a liquid-to-solid ratio of 80 mL/g.The adsorbent maintained robust performance and structural integrity through five adsorption-desorption cycles,highlighting its potential for recyclability and practical application in lithium recovery.These developments represent significant progress in harnessing lithium resources from shale gas produced water,thereby supporting advancements in clean energy technologies.展开更多
The Daning-Jixian block,the eastern edge of the Ordos Basin,is one of the most potential areas for CO_(2)geological storage,enhanced coalbed methane recovery(ECBM)exploration and production in China in recent decades....The Daning-Jixian block,the eastern edge of the Ordos Basin,is one of the most potential areas for CO_(2)geological storage,enhanced coalbed methane recovery(ECBM)exploration and production in China in recent decades.The ionic composition and total dissolved solids(TDS)of the produced water,coal organic matter maturity,molecular composition and carbon isotope characteristics of the produced gas were utilized to analyze the hydrogeological condition,CBM generation and migration characteristics in this area.The CBM enrichment patterns and the geological impacts on gas well production characteristics were revealed.The optimal area for CBM development and CO_(2)geological storage in the study area were also proposed.Dominated by the Xueguan reverse fault zone,the hydraulic unit in this area can be divided into two parts(i.e.,the recharge-runoff zone in the east and the weak runoff-stagnation zone in the west).The thermogenic gas is dominating CBM genesis in this area.Secondary biogenic gas replenishment is only distributed in the eastern margin area,where theδ13C1 value is less than the thermal simulation results as an influence of hydrodynamic fractionation.Finally,two models of CBM formation and accumulation were proposed,1)thermogenic CBM migrated by hydrodynamic and resorbed for preservation at impermeable fault boundaries;2)thermogenic CBM trapped by fault and accumulated by hydrodynamic in slope zone.The gas production performance,generally increased from east to west,is mainly dominated by hydrogeological conditions.Generally,the west side of the fault zone is the enrichment and high-yield area for ECBM development and CO_(2)geological storage in the study area.展开更多
文摘Two-dimensional layered aluminum-based adsorbents have been developed and successfully applied to enrich low-concentration lithium from shale gas produced water.The adsorbent,synthesized with a lithium-to-aluminum molar ratio of 0.6 in the salt solution,demonstrated exceptional performance characteristics.Its structure,featuring nano-encapsulated layers,facilitated lithium insertion,enhanced the surface area,and optimized pore size distribution for efficient adsorption.The adsorption equilibrium was reached within 60 min,closely aligning with the pseudo-second-order model.The isotherm analysis,based on the Sips model,suggested a nonhomogeneous multilayer adsorption process.Additionally,the adsorbent showed exceptional selectivity for Li^(+)over Na^(+),Ca^(2+),and Mg^(2+),ensuring effective lithium enrichment.Further desorption studies indicated that optimal conditions involved using deionized water at 333 K with a liquid-to-solid ratio of 80 mL/g.The adsorbent maintained robust performance and structural integrity through five adsorption-desorption cycles,highlighting its potential for recyclability and practical application in lithium recovery.These developments represent significant progress in harnessing lithium resources from shale gas produced water,thereby supporting advancements in clean energy technologies.
基金the National Natural Science Foundation of China(Grant No.41902178)the National Science and Technology Major Project(Oil&Gas)(No.2016ZX05065)+1 种基金the Natural Science Foundation of Shanxi Province,China(No.20210302123165)the Open Fund of Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering,China University of Geosciences(Beijing)(No.2019BJ02001).
文摘The Daning-Jixian block,the eastern edge of the Ordos Basin,is one of the most potential areas for CO_(2)geological storage,enhanced coalbed methane recovery(ECBM)exploration and production in China in recent decades.The ionic composition and total dissolved solids(TDS)of the produced water,coal organic matter maturity,molecular composition and carbon isotope characteristics of the produced gas were utilized to analyze the hydrogeological condition,CBM generation and migration characteristics in this area.The CBM enrichment patterns and the geological impacts on gas well production characteristics were revealed.The optimal area for CBM development and CO_(2)geological storage in the study area were also proposed.Dominated by the Xueguan reverse fault zone,the hydraulic unit in this area can be divided into two parts(i.e.,the recharge-runoff zone in the east and the weak runoff-stagnation zone in the west).The thermogenic gas is dominating CBM genesis in this area.Secondary biogenic gas replenishment is only distributed in the eastern margin area,where theδ13C1 value is less than the thermal simulation results as an influence of hydrodynamic fractionation.Finally,two models of CBM formation and accumulation were proposed,1)thermogenic CBM migrated by hydrodynamic and resorbed for preservation at impermeable fault boundaries;2)thermogenic CBM trapped by fault and accumulated by hydrodynamic in slope zone.The gas production performance,generally increased from east to west,is mainly dominated by hydrogeological conditions.Generally,the west side of the fault zone is the enrichment and high-yield area for ECBM development and CO_(2)geological storage in the study area.