Using the 3-year observational data from ChinaFlux (Chinese Terrestrial Ecosystem Flux Research Network), we studied the gas regulation flux dynamics and cumulative process of gas regulation value in Qianyanzhou mid...Using the 3-year observational data from ChinaFlux (Chinese Terrestrial Ecosystem Flux Research Network), we studied the gas regulation flux dynamics and cumulative process of gas regulation value in Qianyanzhou middle subtropical plantation (QYF) and Changbai Mountain temperate mixed forest (CBF). The gas regulation service was differentiated into vegetation gas regulation service and net ecosystem gas regulation service. Carbon tax approach, reforestation cost approach and industrial oxygen approach were employed to calculate gas regulation value. Results show that there was significant seasonal variation in vegetation gas regulation flux. Daily CO2 uptake fluxes averaged 82.00 kg·ha^-·d^-1 and 59.37 kg·ha^-·d^-1 and the corresponding 02 emission fluxes were 59.65 kg·ha^-·d^-1 and 43.19 kg·ha^-·d^-1 for QYF and CBF, respectively. The cumulative curves of vegetation gas regulation value always followed a sigmoid shape, and the annual gas regulation value produced by vegetation was RMB 14342.69 yuan·ha^-1 and RMB 10384.18 yuan·ha^-1 for both QYF and CBF, respectively. In terms of monthly net ecosystem gas regulation service, QYF appeared as a CO2 sink and O2 source for the whole year, while CBF appeared to be a CO2 sink and O2 source mainly in the period between May and September. The cumulative curves of net ecosystem gas regulation value presented a sigmoid ("S") shape for QYF, while a unimodal type curve for CBF. The annual net ecosystem gas regulation value was 8470.52 yuan·ha^-1 and 5091.98yuan·ha^-1 for QYF and CBF, respectively. The economic value of both the vegetation gas regulation service and net ecosystem gas regulation service were mainly produced between May and October.展开更多
基金Chinese Terrestrial Ecosystem Flux Observational Research Network(ChinaFlux) for providing the observational data
文摘Using the 3-year observational data from ChinaFlux (Chinese Terrestrial Ecosystem Flux Research Network), we studied the gas regulation flux dynamics and cumulative process of gas regulation value in Qianyanzhou middle subtropical plantation (QYF) and Changbai Mountain temperate mixed forest (CBF). The gas regulation service was differentiated into vegetation gas regulation service and net ecosystem gas regulation service. Carbon tax approach, reforestation cost approach and industrial oxygen approach were employed to calculate gas regulation value. Results show that there was significant seasonal variation in vegetation gas regulation flux. Daily CO2 uptake fluxes averaged 82.00 kg·ha^-·d^-1 and 59.37 kg·ha^-·d^-1 and the corresponding 02 emission fluxes were 59.65 kg·ha^-·d^-1 and 43.19 kg·ha^-·d^-1 for QYF and CBF, respectively. The cumulative curves of vegetation gas regulation value always followed a sigmoid shape, and the annual gas regulation value produced by vegetation was RMB 14342.69 yuan·ha^-1 and RMB 10384.18 yuan·ha^-1 for both QYF and CBF, respectively. In terms of monthly net ecosystem gas regulation service, QYF appeared as a CO2 sink and O2 source for the whole year, while CBF appeared to be a CO2 sink and O2 source mainly in the period between May and September. The cumulative curves of net ecosystem gas regulation value presented a sigmoid ("S") shape for QYF, while a unimodal type curve for CBF. The annual net ecosystem gas regulation value was 8470.52 yuan·ha^-1 and 5091.98yuan·ha^-1 for QYF and CBF, respectively. The economic value of both the vegetation gas regulation service and net ecosystem gas regulation service were mainly produced between May and October.