Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ...Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented.展开更多
A nearly perfect metamaterial absorber is proposed that can find utility in terahertz sensing applications.The design consists of two concentric elliptical ring resonators(ERRs)whose parameters are appropriately set t...A nearly perfect metamaterial absorber is proposed that can find utility in terahertz sensing applications.The design consists of two concentric elliptical ring resonators(ERRs)whose parameters are appropriately set to achieve dual band absorption with near perfect absorption.The first absorption band at 3.62 THz having a Q-factor of 51.7 was caused due to the currents in the outer and inner ERR.The second absorption peak at 3.814 THz having a Q factor of 1411.11 was a consequence of currents flowing across the gap between the two concentric resonators.Furthermore,it is observed that the absorption bands are sensitive to the variation in refractive index of the surrounding medium.The sensitivity's in the absorption bands are 3 THz/RIU and 3.59 THz/RIU respectively.A sensor is proposed based on this design to detect harmful gases,which is demonstrated for detection of Methane and Chloroform.High Q-factor and high sensitivity of the narrow band makes the design an excellent sensor for detecting variations in the refractive index.展开更多
We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling struct...We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .展开更多
Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, ...Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, transmission electron microscopy, fluorescence spectrometer and gas sensing analysis system. The results showed that the Ce-doped ZnO microspheres were composed of numerous nanorods with a diameter of 70 nm and a wurtzite structure. Ce-doping could cause a morphological transition from loose nanorods assembly to a tightly assembly in the microspheres. Compared with pure ZnO, the photoluminescence of the Ce-doped microspheres showed red-shifted UV emission and an enhanced blue emission. Particularly, the Ce-doped ZnO sensors exhibited much higher sensitivity and selectivity to ethanol than that of pure ZnO sensor at 320 °C. The ZnO microspheres doped with 6% Ce (mole fraction) exhibited the highest sensitivity (about 30) with rapid response (2 s) and recovery time (16 s) to 50×10?6 ethanol gas.展开更多
SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal st...The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.展开更多
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
We report the structural characterization and proposed formation mechanism of honeycomb-like ZnO conglomerations fabricated by direct precipitation method. X-ray diffraction (XRD), energy-disperse X-ray spectrometry...We report the structural characterization and proposed formation mechanism of honeycomb-like ZnO conglomerations fabricated by direct precipitation method. X-ray diffraction (XRD), energy-disperse X-ray spectrometry (EDS), scanning electron microscopy (SEM) showed that the as-prepared ZnO calcined at 700 ℃ were micron sphere particles with honeycomb-like structure. In the UV-vis absorbing spectrum, it was observed that there is a new additional absorption band at 260 nm, and it was speculated that the absorption may be caused by defects on the surface and interface of honeycomb-like ZnO. The as-products showed high sensitivity and short response time to sulfured hydrogen gas. These results demonstrate that honeycomb-like ZnO conglomerations are very promising materials for fabricating H2S gas sensors.展开更多
Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has pr...Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators(NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance.Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration,which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.展开更多
In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of...In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy(HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO_3 nanowires. The effect of the Au nanoparticles on the NO_2-sensing performance of WO_3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO_2 at room temperature(25℃). It is found that the 10-? Au-loaded WO_3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO_3 nanowires/porous silicon is also discussed.展开更多
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce...Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.展开更多
Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and ...Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.展开更多
Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of...Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.展开更多
Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ ...Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.展开更多
Nanocrystalline tin oxide samples were prepared by using Sn2 (NH4 )2 (C2O4)3 as the precursor. The thermal decompositions were respectively conducted at 250,450 and 650 ℃. TG-DTA, XRD, TEM, FTIR were used to char...Nanocrystalline tin oxide samples were prepared by using Sn2 (NH4 )2 (C2O4)3 as the precursor. The thermal decompositions were respectively conducted at 250,450 and 650 ℃. TG-DTA, XRD, TEM, FTIR were used to characterize the samples. The indirect heating sensors by using these materials as sensitive bodies were fabricated on an alumina tube with Au electrodes and platinum wires. Sensing properties of these sensors were investigated. It was found that the tin oxide sample obtained by thermal decomposition at 450 ℃ has a higher sensitivity to C2H5OH and a higher selectivity to hexane and ammonia than those obtained via the conventional precipitate method and the working temperatures needed were greatly decreased.展开更多
We report on the fabrication and performance of a room-temperature NO2 gas sensor based on a WO3 nanowires/porous silicon hybrid structure. The W18O49 nanowires are synthesized directly from a sputtered tungsten film ...We report on the fabrication and performance of a room-temperature NO2 gas sensor based on a WO3 nanowires/porous silicon hybrid structure. The W18O49 nanowires are synthesized directly from a sputtered tungsten film on a porous silicon (PS) layer under heating in an argon atmosphere. After a carefully controlled annealing treatment, WO3 nanowires are obtained on the PS layer without losing the morphology. The morphology, phase structure, and crystallinity of the nanowires are investigated by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and high-resolution transmission electron microscopy (HRTEM). Comparative gas sensing results indicate that the sensor based on the WO3 nanowires exhibits a much higher sensitivity than that based on the PS and pure WO3 nanowires in detecting NO2 gas at room temperature. The mechanism of the WO3 nanowires/PS hybrid structure in the NO2 sensing is explained in detail.展开更多
This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n...This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n—C_6H_(14)and n—C_7H_(16),we find that the components have selectivity to CH_3COCH_3, C_2H_5OH and that the ideal amount of Pr_6O_(11) in the components is about I.Owt%.The experiments also show that with the increase of the amount of Pr_6O_(11),the ideal working temperature,the response and restoration time decrease.展开更多
The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, s...The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.展开更多
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hyb...Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.展开更多
A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirr...A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3204700)the National Natural Science Foundation of China(52122513)+2 种基金the Natural Science Foundation of Heilongjiang Province(YQ2021E022)the Natural Science Foundation of Chongqing(2023NSCQ-MSX2286)the Fundamental Research Funds for the Central Universities(HIT.BRET.2021010)。
文摘Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented.
文摘A nearly perfect metamaterial absorber is proposed that can find utility in terahertz sensing applications.The design consists of two concentric elliptical ring resonators(ERRs)whose parameters are appropriately set to achieve dual band absorption with near perfect absorption.The first absorption band at 3.62 THz having a Q-factor of 51.7 was caused due to the currents in the outer and inner ERR.The second absorption peak at 3.814 THz having a Q factor of 1411.11 was a consequence of currents flowing across the gap between the two concentric resonators.Furthermore,it is observed that the absorption bands are sensitive to the variation in refractive index of the surrounding medium.The sensitivity's in the absorption bands are 3 THz/RIU and 3.59 THz/RIU respectively.A sensor is proposed based on this design to detect harmful gases,which is demonstrated for detection of Methane and Chloroform.High Q-factor and high sensitivity of the narrow band makes the design an excellent sensor for detecting variations in the refractive index.
文摘We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .
基金Project(61079010)supported by the National Natural Science Foundation of China and the Civil Aviation Administration of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(MHRD20140209)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, transmission electron microscopy, fluorescence spectrometer and gas sensing analysis system. The results showed that the Ce-doped ZnO microspheres were composed of numerous nanorods with a diameter of 70 nm and a wurtzite structure. Ce-doping could cause a morphological transition from loose nanorods assembly to a tightly assembly in the microspheres. Compared with pure ZnO, the photoluminescence of the Ce-doped microspheres showed red-shifted UV emission and an enhanced blue emission. Particularly, the Ce-doped ZnO sensors exhibited much higher sensitivity and selectivity to ethanol than that of pure ZnO sensor at 320 °C. The ZnO microspheres doped with 6% Ce (mole fraction) exhibited the highest sensitivity (about 30) with rapid response (2 s) and recovery time (16 s) to 50×10?6 ethanol gas.
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).
基金Project(51201052)supported by the National Natural Science Foundation of ChinaProject(2012RFQXG107)supported by the Innovative Talent Fund of Harbin City+1 种基金Project(E201056)supported by Natural Science Foundation of Heilongjiang Province of ChinaProject(1252G022)supported by the Program for Youth Academic Backbone in Heilongjiang Provincial University,China
文摘The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金the National Natural Science Foundation of China(No.20771095)He'nan Outstanding Youth Science Fund(No.0612002700)is gratefully acknowledged.
文摘We report the structural characterization and proposed formation mechanism of honeycomb-like ZnO conglomerations fabricated by direct precipitation method. X-ray diffraction (XRD), energy-disperse X-ray spectrometry (EDS), scanning electron microscopy (SEM) showed that the as-prepared ZnO calcined at 700 ℃ were micron sphere particles with honeycomb-like structure. In the UV-vis absorbing spectrum, it was observed that there is a new additional absorption band at 260 nm, and it was speculated that the absorption may be caused by defects on the surface and interface of honeycomb-like ZnO. The as-products showed high sensitivity and short response time to sulfured hydrogen gas. These results demonstrate that honeycomb-like ZnO conglomerations are very promising materials for fabricating H2S gas sensors.
基金supported by Natural Science Foundation of China(NSFC)(Grant No.U1432249)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+1 种基金supported by Collaborative Innovation Center of Suzhou Nano Science&Technologysponsored by Qing Lan Project
文摘Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators(NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance.Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration,which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274074 and 61271070)the Key Research Program of Application Foundation and Advanced Technology of Tianjin,China(Grant No.11JCZDJC15300)
文摘In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy(HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO_3 nanowires. The effect of the Au nanoparticles on the NO_2-sensing performance of WO_3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO_2 at room temperature(25℃). It is found that the 10-? Au-loaded WO_3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO_3 nanowires/porous silicon is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 083H311501)the National High Technology Research and Development Program of China (Grant No 073H3f1514)
文摘Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
基金financially supported by the National Natural Science Foundation of China(No.20871071)the Science and Technology Commission Foundation of Tianjin(No.09JCYBJC03600 and 10JCYBJC03900)
文摘Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.
基金supported by the Opening Project Foundation of MOE Key Laboratory of Liquid Structure and Heredity of Materials and Natural Science foundation of Shandong Province(Grant NO.Y20002F24).
文摘Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.
基金Supported by the Bandar Abbas Branch of the Islamic Azad University
文摘Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.
文摘Nanocrystalline tin oxide samples were prepared by using Sn2 (NH4 )2 (C2O4)3 as the precursor. The thermal decompositions were respectively conducted at 250,450 and 650 ℃. TG-DTA, XRD, TEM, FTIR were used to characterize the samples. The indirect heating sensors by using these materials as sensitive bodies were fabricated on an alumina tube with Au electrodes and platinum wires. Sensing properties of these sensors were investigated. It was found that the tin oxide sample obtained by thermal decomposition at 450 ℃ has a higher sensitivity to C2H5OH and a higher selectivity to hexane and ammonia than those obtained via the conventional precipitate method and the working temperatures needed were greatly decreased.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271070,61274074,and 60771019)the Key Research Program of Application Foundation and Advanced Technology of Tianjin,China(Grant No.11JCZDJC15300)
文摘We report on the fabrication and performance of a room-temperature NO2 gas sensor based on a WO3 nanowires/porous silicon hybrid structure. The W18O49 nanowires are synthesized directly from a sputtered tungsten film on a porous silicon (PS) layer under heating in an argon atmosphere. After a carefully controlled annealing treatment, WO3 nanowires are obtained on the PS layer without losing the morphology. The morphology, phase structure, and crystallinity of the nanowires are investigated by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and high-resolution transmission electron microscopy (HRTEM). Comparative gas sensing results indicate that the sensor based on the WO3 nanowires exhibits a much higher sensitivity than that based on the PS and pure WO3 nanowires in detecting NO2 gas at room temperature. The mechanism of the WO3 nanowires/PS hybrid structure in the NO2 sensing is explained in detail.
文摘This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n—C_6H_(14)and n—C_7H_(16),we find that the components have selectivity to CH_3COCH_3, C_2H_5OH and that the ideal amount of Pr_6O_(11) in the components is about I.Owt%.The experiments also show that with the increase of the amount of Pr_6O_(11),the ideal working temperature,the response and restoration time decrease.
文摘The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.
基金financially supported by the National Natural Science Foundation of China(No.21171099)Science and Technology Commission Foundation of Tianjin(Nos.09JCYBJC03600 and 10JCYBJC03900)
文摘Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.
基金Financial support from National High Technology Research and Development Programof China(Grant No.:2007A A06Z1122007AA03Z446)
文摘A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.