Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A goo...Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A good understanding of the relative permeability and capillary pressure characteristics is crucial to predict the process of acid gas injection and migration.The prediction of injection and redistribution of acid gas is important to determine storage capacity,formation pressure,plume extent,shape,and leakage potential.Herein,the existing experimental data and theoretical models were reviewed to gain a better understanding of the issue how the H_(2)S content affects gas density,gas viscosity,interfacial tension,wettability,relative permeability and capillary pressure characteristics of acid gas/brine/rock systems.The densities and viscosities of the acid gas with different H_(2)S mole fractions are both temperature-and pressure-dependent,which vary among the gas,liquid and supercritical phases.Water/acid gas interfacial tension decreases strongly with increasing H_(2)S content.For mica and clean quartz,water contact angle increases with increasing H_(2)S mole fraction.In particular,wettability reversal of mica to a H_(2)S-wet behavior occurs in the presence of dense H_(2)S.The capillary pressure increases with decreasing contact angle.At a given saturation,the relative permeability of a fluid is higher when the fluid is nonwetting.The capillary pressure decreases with decreasing interfacial tension at a given saturation.However,the existing datasets do not show a consistent link between capillary number and relative permeability.The capillary pressure decreases with increasing H_(2)S mole fraction.However,there is no consensus on the effect of the H_(2)S content on the relative permeability curves.This may be due to the limited availability of the relative permeability and capillary pressure data for acid gas/brine/rock systems;thus,more experimental measurements are required.展开更多
In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we inve...In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we investigated the preferential adsorption of CH4 and CO2 on coals. Adsorption of pure CO2, CH4 and their binary mixtures on high-rank coals from Qinshui Basin in China were employed to study the preferential adsorption behaviour. Multiple regression equations were presented to predict CH4 equi- librium concentration from equilibrium pressure and its initial-composition in feed gas. The results show that preferential adsorption of CO2 on coals over the entire pressure range under competitive sorption conditions was observed, however, preferential adsorption of CH4 over CO2 on low-volatile bituminous coal from higher CH4-compostion in source gas was found at up to 1O MPa pressure. Preferential adsorp- tion of CO2 increases with increase of CH4 concentration in source gas, and decreases with increasing pressure. Although there was no systematic investigation of the effect of coal rank on preferential adsorp- tion, there are obvious differences in preferential adsorption of gas between low-volatile bituminous coal and anthracite. The obtained preferential adsorption gives rise to the assumption that CO2 sequestration in coal beds with subsequent CO2-ECBM might be an ootion in Qinshui Basins, China.展开更多
After a general analysis regarding the concept of coal "cleat system", its genetic origin and practical applications to coalbed methane (CBM) commercial production and to C02 geological sequestration projects, the...After a general analysis regarding the concept of coal "cleat system", its genetic origin and practical applications to coalbed methane (CBM) commercial production and to C02 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1) how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2) how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS), able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41872210 and 41274111)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.Z018002)。
文摘Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A good understanding of the relative permeability and capillary pressure characteristics is crucial to predict the process of acid gas injection and migration.The prediction of injection and redistribution of acid gas is important to determine storage capacity,formation pressure,plume extent,shape,and leakage potential.Herein,the existing experimental data and theoretical models were reviewed to gain a better understanding of the issue how the H_(2)S content affects gas density,gas viscosity,interfacial tension,wettability,relative permeability and capillary pressure characteristics of acid gas/brine/rock systems.The densities and viscosities of the acid gas with different H_(2)S mole fractions are both temperature-and pressure-dependent,which vary among the gas,liquid and supercritical phases.Water/acid gas interfacial tension decreases strongly with increasing H_(2)S content.For mica and clean quartz,water contact angle increases with increasing H_(2)S mole fraction.In particular,wettability reversal of mica to a H_(2)S-wet behavior occurs in the presence of dense H_(2)S.The capillary pressure increases with decreasing contact angle.At a given saturation,the relative permeability of a fluid is higher when the fluid is nonwetting.The capillary pressure decreases with decreasing interfacial tension at a given saturation.However,the existing datasets do not show a consistent link between capillary number and relative permeability.The capillary pressure decreases with increasing H_(2)S mole fraction.However,there is no consensus on the effect of the H_(2)S content on the relative permeability curves.This may be due to the limited availability of the relative permeability and capillary pressure data for acid gas/brine/rock systems;thus,more experimental measurements are required.
基金supported by the National Natural Science Foundation of China(Nos.51174127 and 21176145)the Natural Science Foundation of Shandong Province(No.ZR2011DM005)the Open Research Fund Program of Key Laboratory of Mine Disaster Prevention and Control(Shandong University of Science and Technology)(No.MDPC0806)
文摘In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we investigated the preferential adsorption of CH4 and CO2 on coals. Adsorption of pure CO2, CH4 and their binary mixtures on high-rank coals from Qinshui Basin in China were employed to study the preferential adsorption behaviour. Multiple regression equations were presented to predict CH4 equi- librium concentration from equilibrium pressure and its initial-composition in feed gas. The results show that preferential adsorption of CO2 on coals over the entire pressure range under competitive sorption conditions was observed, however, preferential adsorption of CH4 over CO2 on low-volatile bituminous coal from higher CH4-compostion in source gas was found at up to 1O MPa pressure. Preferential adsorp- tion of CO2 increases with increase of CH4 concentration in source gas, and decreases with increasing pressure. Although there was no systematic investigation of the effect of coal rank on preferential adsorp- tion, there are obvious differences in preferential adsorption of gas between low-volatile bituminous coal and anthracite. The obtained preferential adsorption gives rise to the assumption that CO2 sequestration in coal beds with subsequent CO2-ECBM might be an ootion in Qinshui Basins, China.
基金Fundao Fernando Pessoa/Fernando Pessoa University for supporting this investigation in the scope of the GIAGEB-Global Change, Energy, Environment and Bioengineering Research Unit
文摘After a general analysis regarding the concept of coal "cleat system", its genetic origin and practical applications to coalbed methane (CBM) commercial production and to C02 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1) how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2) how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS), able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.