期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Gas Sources of Natural Gas Hydrates in the Shenhu Drilling Area, South China Sea: Geochemical Evidence and Geological Analysis 被引量:13
1
作者 ZHU Youhai HUANG Xia +1 位作者 FU Shaoying SU Pibo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期767-776,共10页
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated... The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ^13C1) are -56.7%0. and -60.9%0, and its hydrogen isotope (δD) are -199%0 and -180%0, respectively, indicating the methane from the microbial reduction of CO2. Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process. 展开更多
关键词 natural gas hydrate METHANE microbial gas gas source MIGRATION South China Sea
下载PDF
Study of the gas sources of the Ordovician gas reservoir in the Central-Eastern Ordos Basin 被引量:3
2
作者 Ji-Jun Li Zi-Wei Song +4 位作者 Chun-Lin Zhang Shuang-Fang Lu Mei-Jun Dong Shu-Ning Zhang Jun Jiang 《Petroleum Science》 SCIE CAS CSCD 2022年第3期949-962,共14页
The source of the natural gas in the Lower Paleozoic Ordovician strata in the Ordos Basin,China is a controversial issue.In the present study,the genesis and distribution characteristics of the Ordovician natural gas ... The source of the natural gas in the Lower Paleozoic Ordovician strata in the Ordos Basin,China is a controversial issue.In the present study,the genesis and distribution characteristics of the Ordovician natural gas were qualitatively investigated based on the composition of the natural gas and the hydrocarbon isotopic composition.Then,the kinetics of the carbon isotope were analyzed to determine the proportions of the gas in the Ordovician gas reservoir contributed from the Carboniferous-Permian and Ordovician strata.The results show the following.Compared to the Upper Paleozoic natural gas,the Ordovician natural gas has a large dryness coefficient.In core areas where gypsum-salt rocks are developed,the gypsum-salt rocks completely isolate the gas sources.The weathering crust of the reservoir in the fifth member of the Majiagou Formation(Ma_(5)^(1+2))originates primarily from the Upper Paleozoic coal-measure source rocks,while the Ma_(5)^(5)and the pre-salt natural gas are mainly derived from the Ordovician source rocks.In the areas where the gypsum-salt rocks are relatively well-developed,the gypsum-salt rocks isolate the gas source to some extent,the pre-salt gas reservoir is mainly derived from the Lower Paleozoic source rocks,and this contribution gradually increases with increasing depth.In the areas where the gypsum-salt rocks are not developed,the proportion of the contribution of the Upper and Lower Paleozoic source rocks to the gas source of the Ordovician gas reservoir is mainly controlled by the volume of gas generated and the other accumulation conditions,and it does not reflect the isolation effect of the gypsum-salt rocks on the gas source.The Ordovician natural gas accumulation models in the central-eastern Ordos Basin can be divided into four types according to the differences in the gas sources. 展开更多
关键词 Ordos Basin Majiagou Formation Carbon isotope kinetics Gypsum layer gas source
下载PDF
Effect of Gas Sources on the Deposition of Nano-Crystalline Diamond Films Prepared by Microwave Plasma Enhanced Chemical Vapor Deposition 被引量:1
3
作者 翁俊 熊礼威 +2 位作者 汪建华 满卫东 陈冠虎 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期761-764,共4页
Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ... Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness. 展开更多
关键词 nano-crystalline diamond thin film chemical vapor deposition gas source ethanol
下载PDF
Gas Sources of Natural Gas Hydrates in the Muli Permafrost of Qilian Mountain 被引量:1
4
作者 CHENG Qingsong GONG Jianming ZHANG Min 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2281-2282,共2页
The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of sourc... The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of source rocks. Up to date, the source of gas or the main source rocks of the Mull gas hydrates have remained unclear. 展开更多
关键词 gas sources of Natural gas Hydrates in the Muli Permafrost of Qilian Mountain ROCK
下载PDF
Gas Sources for Natural Gas Hydrates in the Permafrost Region of the Qilian Mountains 被引量:1
5
作者 JIANG Yubo GONG Jianming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第5期1925-1925,共1页
Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons... Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons and multiple sets of mature and over-mature source rocks.Gas sources of these gas hydrates in the study area include coal-type gas and oil-type gas. 展开更多
关键词 area gas sources for Natural gas Hydrates in the Permafrost Region of the Qilian Mountains
下载PDF
Oil and gas source and accumulation of Zhongqiu 1 trap in Qiulitage structural belt, Tarim Basin, NW China
6
作者 LI Jian LI Jin +7 位作者 XIE Zengye WANG Chao ZHANG Haizu LIU Mancang LI Dejiang MA Wei MAO Danfeng ZENG Xu 《Petroleum Exploration and Development》 2020年第3期548-559,共12页
Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Z... Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Zhongqiu structural belt and the reservoir formation process in Zhongqiu 1 trap remain unclear, so study on these issues may provide important basis for the next step of oil and gas exploration and deployment in Qiulitage structural belt. In this study, a systematic correlation of oil and gas source in Well Zhongqiu 1 has been carried out. The oil in Well Zhongqiu 1 is derived from Triassic lacustrine mudstone, while the gas is a typical coal-derived gas and mainly from Jurassic coal measures. The oil charging in Well Zhongqiu 1 mainly took place during the sedimentary period from Jidike Formation to Kangcun Formation in Neogene, and the oil was mainly contributed by Triassic source rock;large-scale natural gas charging occurred in the sedimentary period of Kuqa Formation in Neogene, and the coal-derived gas generated in the late Jurassic caused large-scale gas invasion to the early Triassic crude oil reservoirs. The Zhongqiu 1 trap was formed earlier than or at the same period as the hydrocarbon generation and expulsion period of Triassic-Jurassic source rocks. Active faults provided paths for hydrocarbon migration. The source rocks-faults-traps matched well in time and space. Traps in the footwall of the Zhongqiu structural fault have similar reservoir-forming conditions with the Zhongqiu 1 trap, so they are favorable targets in the next step of exploration. 展开更多
关键词 Tarim Basin Kuqa foreland thrust belt Qiulitage structural belt oil and gas source oil and gas accumulation Zhongqiu1 trap
下载PDF
China Eyes Additional Foreign Oil and Gas Sources
7
作者 Ma Lianshan 《China Oil & Gas》 CAS 2013年第4期53-56,共4页
China is expanding its scope in looking for energy resources in foreign assets,participating actively in the international oil and gas market to ensure the domestic supply driven by economic growth.In mid-November 201... China is expanding its scope in looking for energy resources in foreign assets,participating actively in the international oil and gas market to ensure the domestic supply driven by economic growth.In mid-November 2013,Sinopec Group,the country’s largest refiner,announced it has officially completed the acquisition of one-third of Apache Corp.’s Egypt oil and gas business.On Aug 30,Sinopec and Apache had launched a global strategic partnership,with the 展开更多
关键词 LNG China Eyes Additional Foreign Oil and gas sources US THAN
下载PDF
Sinian gas sources and effectiveness of primary gas-bearing system in Sichuan Basin, SW China 被引量:2
8
作者 ZHAO Wenzhi XIE Zengye +4 位作者 WANG Xiaomei SHEN Anjiang WEI Guoqi WANG Zecheng WANG Kun 《Petroleum Exploration and Development》 CSCD 2021年第6期1260-1270,共11页
Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural g... Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural gas in the Sinian of Sichuan Basin have been discussed to sort out the contribution of Sinian source rocks to the gas reservoirs and effectiveness of Sinian primary gas-bearing system.Through the analysis of natural gas composition,carbon and hydrogen isotopes and effectiveness of Sinian accumulation assemblages,it is concluded that:(1)The natural gas derived from the Sinian source rock is characterized by low ethane content,heavy ethane carbon isotope and light methane hydrogen isotope,and obviously different from the gas generated by the Cambrian source rock.(2)The gas reservoirs discovered in Sinian Dengying Formation are sourced by Sinian and Cambrian source rocks,and the Sinian source rock contributes different proportions to the gas in the 4th member and the 2nd member of the Dengying Formation,specifically,39%and 55%to the 4th member in marginal zone and intra-platform,54%and 68%to the 2th member in the marginal zone and intra-platform respectively.(3)The effectiveness of the Sinian primary gas-bearing system depends on the gas generating effectiveness of the source kitchen,reservoir and combination of gas accumulation elements.For high-over mature marine source rocks at the Ro of less than 3.5%,besides gas generated from the thermal cracking of liquid hydrocarbon,the kerogen still has some gas generation potential by thermal degradation.In addition,the Sinian microbial dolomite still preserves relatively good-quality reservoirs despite large burial depths,which match well with other basic conditions for gas accumulation in central Sichuan paleo-uplift,increasing the possibility of Sinian primary gas-bearing system.The research results confirm that the Sinian primary gas-bearing system is likely to form large-scale accumulation. 展开更多
关键词 natural gas carbon isotope hydrogen isotope geochemical characteristics gas and source rock correlation Sinian System primary gas-bearing system Sichuan Basin
下载PDF
Molecular geochemical characteristics of gas source rocks from the Upper Triassic Xujiahe Formation indicate transgression events in the Sichuan Basin 被引量:10
9
作者 ZHANG Min HUANG GuangHui +2 位作者 LI HongBo HU GuoYi ZHANG ShuiChang 《Science China Earth Sciences》 SCIE EI CAS 2012年第8期1260-1268,共9页
The geochemical characteristics of saturated and aromatic hydrocarbons from different formations and lithologies provide ob-vious evidence for transgressions that occurred during Upper Triassic Xujiahe stage in Sichua... The geochemical characteristics of saturated and aromatic hydrocarbons from different formations and lithologies provide ob-vious evidence for transgressions that occurred during Upper Triassic Xujiahe stage in Sichuan Basin with a great impact on the source input and depositional environment.A clear dual peak distribution for normal alkanes and obvious abundant com-pounds sourced from bacteria and algae in whole oil gas chromatogram indicates the abundance of lower organisms input.The ratio of Pr/Ph is low,ranging from 0.33 to 0.86 with an average of 0.60,quite different from Pr/Ph >2.0 for coal measures in swamp environment,representing source rocks from saline lake or marine facies.In the gas source rocks extracts,abundant β-carotane,-carotane,and their degradated series were detected in the whole oil chromatogram,indicating a reducing envi-ronment.The concentrations of methyl steranes and dinosteranes are high.The content of polycyclic aromatic sulfur heterocy-cles(PASH) is relatively higher in aromatic fraction and the assemblage of fluorene,dibenzofuran,and dibenzothiophene is different from the typical saline lake and the regular swamp facies source rocks,manifesting the transgression effects on gas source rocks. 展开更多
关键词 gas source rock BIOMARKER transgression event Upper Triassic Sichuan Basin
原文传递
Gas hydrate accumulation associated with fluid escape structure in the western margin of South China Sea
10
作者 Taotao YANG Lin LI +4 位作者 Yintao LU Kaiqi YU Zhili YANG Xuefeng WANG Wei LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期947-958,共12页
Gas hydrates have been found in the western continental margin of South China Sea,which are revealed by widespread bottom simulating reflectors(BSRs)imaged from a three-dimensional(3D)seismic volume near the Guangle c... Gas hydrates have been found in the western continental margin of South China Sea,which are revealed by widespread bottom simulating reflectors(BSRs)imaged from a three-dimensional(3D)seismic volume near the Guangle carbonate platform in the western South China Sea.Fluid-escape structures(faults and gas chimneys)are originated below BSR were distinguished.A comprehensive model in three-level structure was proposed to depict the gas hydrate accumulation in the study area.In Level 1,regional major faults and gas chimneys provide the first pathways of upward migration of gas near basement.In Level 2,pervasive polygonal faults in carbonate layer promote the migration of gas.In Level 3,gases sourced from near-basement accumulate within shallow sediment layers and form gas hydrate above the unit with faults once appropriate temperature and pressure occur.The gas hydrates in the study area are mainly in microbial origin,and their accumulation occurs only when fluid-escape structures align in all the three levels.The proposed model of the gas hydrate accumulation in western SCS margin provides new insights for further studies in this poorly studied area. 展开更多
关键词 gas hydrate fluid-escape structures gas sources bottom simulating reflector(BSR) South
下载PDF
Technical Analysis of Freshwater Use as Part of a Responsibly Sourced Gas ESG Strategy
11
作者 Finlay Carlson Huishu Li +2 位作者 Asma Hanif Josh Zier Kenneth Carlson 《Journal of Water Resource and Protection》 2022年第3期292-303,共12页
The Unconventional Oil and Gas industry has seen growth over the last ten years that has drastically transformed the domestic energy outlook while bringing up increased concerns over climate and environmental issues. ... The Unconventional Oil and Gas industry has seen growth over the last ten years that has drastically transformed the domestic energy outlook while bringing up increased concerns over climate and environmental issues. The rise of ESG and RSG can be seen as direct answers to these growing issues as communities and operators have both begun to demand better practices to limit the overall effects of UOG production. Few quantifiable metrics exist that holistically try to determine the overall effect UOG production has on local water resources. The FR2 metric/framework developed in this paper attempts to use commonly kept data such as water withdrawn and flowback volumes in conjunction with a new water stress index to quantify the effects operators are having on local water supplies. Testing this framework on a handful of operators from the Marcellus basin using open-source data revealed the value added by these methods as well as their use in a general RSG program. 展开更多
关键词 Responsible sourced gas UOG Water Stewardship Water Stress Water Sustainability
下载PDF
Development of a ~3He Gas Filling Station at the China Spallation Neutron Source
12
作者 Zecong Qin Chuyi Huang +8 位作者 ZNBuck WKreuzpaintner SMAmir ASalman Fan Ye Junpei Zhang Chenyang Jiang Tianhao Wang Xin Tong 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第5期16-20,共5页
At the China Spallation Neutron Source(CSNS), we have developed a custom gas-filling station, a glassblowing workshop, and a spin-exchange optical pumping(SEOP) system for producing high-quality ^(3)He-based neutron s... At the China Spallation Neutron Source(CSNS), we have developed a custom gas-filling station, a glassblowing workshop, and a spin-exchange optical pumping(SEOP) system for producing high-quality ^(3)He-based neutron spin filter(NSF) cells. The gas-filling station is capable of routinely filling ^(3)He cells made from GE180 glass of various dimensions, to be used as neutron polarizers and analyzers on beamlines at the CSNS. Performance tests on cells fabricated at our gas-filling station are conducted via neutron transmission and nuclear-magneticresonance measurements, revealing nominal filling pressures, and a saturated ~3He polarization in the region of 80%, with a lifetime of approximately 240 hours. These results demonstrate our ability to produce competitive NSF cells to meet the ever-increasing research needs of the polarized neutron research community. 展开更多
关键词 NSF Development of a gas Filling Station at the China Spallation Neutron source
下载PDF
Formation Mechanism and Controlling Factors of Natural Gas Reservoirs of the Jialingjiang Formation in the East Sichuan Basin 被引量:16
13
作者 ZHU Guangyou ZHANG Shuichang +2 位作者 LIANG Yingbo ZHOU Guoyuan WANG Zhengjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第5期805-816,共12页
The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging fr... The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite. 展开更多
关键词 Lower Triassic Jialingjiang Formation gas source carbon isotope hydrogen sulphide Wolonghe gas pool Sichuan Basin
下载PDF
Gas drainage from different mine of drainage systems for deep coal areas: optimal placement seams with high gas emissions 被引量:10
14
作者 Ping Lu Ping Li +3 位作者 Jian Chen Chuijin Zhang Junhua Xue Tao Yu 《International Journal of Coal Science & Technology》 EI 2015年第1期84-90,共7页
The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applie... The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue . 展开更多
关键词 gas drainage Different gas sources Y-type ventilation Gob side retained roadway gas emission gas-enrichment zone
下载PDF
Origin of the hydrate bound gases in the Juhugeng Sag, Muli Basin, Tibetan Plateau 被引量:4
15
作者 Shiming Liu Furong Tan +3 位作者 Ting Huo Shuheng Tang Weixiao Zhao Haide Chao 《International Journal of Coal Science & Technology》 EI 2020年第1期43-57,共15页
The Juhugeng Sag,located in northwest of the Muli Basin,Tibetan Plateau,has been investigated for coal and petroleum resources during the past several decades.There have been successful recoveries of gas hydrates duri... The Juhugeng Sag,located in northwest of the Muli Basin,Tibetan Plateau,has been investigated for coal and petroleum resources during the past several decades.There have been successful recoveries of gas hydrates during recent years from the Middle Jurassic Yaojie Formation that offer insight into the origin of the hydrocarbon gases from the complex sag feature.This study examines the organic geochemical and stable carbon isotopic characteristics of shale and coal samples from the Middle Jurassic Yaojie Formation of the Juhugeng Sag,as well as compares with carbon isotopes,gas amounts and components of hydrate-bound gas.A total of 19 samples from surface mining,including 12 samples of black shale and 7 samples of coal,were analysed using a micro-photometer,a gas chromatograph,Rock–Eval and isotope methods.All the shale samples contained 100%type I kerogen,and the random vitrinite reflectance values vary from 0.65%to 1.32%and achieve thermal pyrolysis phase.Isotope values of methane(δ13C ranging from−52.6‰to−39.5‰andδD ranging from−285‰to−227‰)in the hydrate bound gases suggest that the methane originates mainly from thermogenic contributions.It is proposed that ethane from the gas hydrate is thermogenic-produced,and this conjecture is supported by the fact that most of the gas hydrate also contains more than 30%of thermogenic C2+hydrocarbons and is similar to structure II hydrate.Carbon isotope data from the gas hydrates show a positive carbon isotope series(δ13C1<δ13C2<δ13C3),with ethaneδ13C values being lighter than−28.5‰,as high consistency with source rocks from the Jurassic period indicate thermal oil-prone gas.A model of the accumulation of gas hydrate is plotted.However,the gaseous sources of gas hydrates may be a subject for more research. 展开更多
关键词 Muli Basin Stable carbon isotopes gas hydrate gas source Alkane gas
下载PDF
Geochemical Characteristics and Gas-to-Gas Correlation of Two Leakage-type Gas Hydrate Accumulations in the Western Qiongdongnan Basin, South China Sea 被引量:3
16
作者 LAI Hongfei QIU Haijun +4 位作者 LIANG Jinqiang KUANG Zenggui FANG Yunxin REN Jinfeng LU Jing’an 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期680-690,共11页
In recent years,a series of highly saturated leakage-type gas hydrates have been discovered in the western Qiongdongnan Basin(QDNB),South China Sea.Based on the molecular compositional and isotopic characteristics of ... In recent years,a series of highly saturated leakage-type gas hydrates have been discovered in the western Qiongdongnan Basin(QDNB),South China Sea.Based on the molecular compositional and isotopic characteristics of the gas samples relevant to the gas hydrates collected from the two leakage-type gas hydrate accumulations in the GMGS5 and GMGS6 drilling zones,a detailed geochemical gas-to-gas correlation was conducted in this study,in order to further understand the geochemical characteristics and possible hydrocarbon sources of these gas hydrates.The natural gas relevant to the gas hydrates in the GMGS5 block is characterized by wet gas(67.96%<%C_(1)<98.58%,C_(1)/C_(1+)<0.9)and significant molecular and carbon isotope fractionation within the depth profile,whereas the gas samples from the GMGS6 block exhibit the characteristics of dry gas(99.25%<%C_(1)<99.81%,C_(1)/C_(1+)>0.9)and lack molecular and carbon isotope fractionation.Approximately 40%‒60%of the methane within the gas hydrate is of microbial origin,while the C^(2+)gas components are typical coal-type gas that are derived from thermogenic source rocks or deeply-buried natural gas fields.In addition,typical in situ primary microbial methane(−80.6‰<δ^(13)C-C_(1)<−67.7‰)was discovered in well W b,which was applied to estimate the contribution of the microbial gas to the gas hydrates.The gas-to-gas correlation results show that the hydrate gases within the two leakage-type gas hydrate accumulations in the GMGS5 and GMGS6 blocks are geochemically different,suggesting that they may have been derived from different source kitchens.Our results further indicate that the deeply-buried thermogenic gas significantly contributed to the shallowly-buried gas hydrates in the western QDNB and multiple effective thermogenic source kitchens provided the hydrocarbon gas in the gas hydrate accumulations. 展开更多
关键词 gas hydrate gas genetic type hydrocarbon gas source geochemical characteristics
下载PDF
Determining the Main Gas-generation Phase of Marine Organic Matters in Different Occurrence States using the Kinetic Method 被引量:2
17
作者 WANG Yunpeng ZHAO Changyi +6 位作者 WANG Zhaoyun WANG Hongjun ZOU Yanrong LIU Jinzhong ZHAO Wenzhi LIU Dehan LU Jialan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第1期197-205,共9页
This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas genera... This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example. 展开更多
关键词 marine organic matter KEROGEN oil cracking hydrocarbon generating kinetics main gasgeneration phase southwestern Tarim Basin gas source kitchen
下载PDF
Two highly efficient accumulation models of large gas fields in China 被引量:2
18
作者 Wang Hongjun Bian Congsheng +2 位作者 Liu Guangdi Sun Mingliang Li Yongxin 《Petroleum Science》 SCIE CAS CSCD 2014年第1期28-38,共11页
Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,domina... Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,dominated by stratigraphic and lithologic gas reservoirs.The formation of these two types of large gas fields is related to the highly efficient accumulation of natural gas.The accumulation of high abundance gas fields is dependent on the rapid maturation of the source kitchen and huge residual pressure difference between the gas source kitchen and reservoir,which is the strong driving force for natural gas migration to traps.Whereas the accumulation of low abundance gas fields is more complicated,involving both volume flow charge during the burial stage and diffusion flow charge during the uplift stage,which results in large area accumulation and preservation of natural gas in low porosity and low permeability reservoirs.This conclusion should assist gas exploration in different geological settings. 展开更多
关键词 Natural gas gas source kitchen highly efficient accumulation large gas field reserve abundance resource potential
下载PDF
Fault Systems and their Control of Deep Gas Accumulations in Xujiaweizi Area 被引量:2
19
作者 SUN Yonghe KANG Lin +2 位作者 BAI Haifeng FU Xiaofei HU Ming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1547-1558,共12页
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ... A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area. 展开更多
关键词 deep gas accumulation fault system gas source fault volcanic reservoir XUJIAWEIZI
下载PDF
Modes of Shale-Gas Enrichment Controlled by Tectonic Evolution 被引量:4
20
作者 LI Chaochun OU Chenghua 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1934-1947,共14页
The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmax... The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration. 展开更多
关键词 shale gas enrichment mode tectonic evolution hydrocarbon source gas reservoir seal formation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部