期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Infrared measurement of temperature field in coal gas desorption 被引量:7
1
作者 Liu Jikun Wang Cuixia +1 位作者 He Xueqiu Li Shugang 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期57-61,共5页
In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared vi... In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared video signals obtained by the experiment are processed with SAT.Then the infrared radiation signals are processed by EMD with Hilbert–Huang and the infrared radiation noise is effectively removed.The research results show that the desorption process,with the change of the temperature,is an endothermic process.The coal absorbs heat when the gas is desorbed and the temperature drops.The coal body temperature drop range is obviously related to coal particle size.The smaller the particle size is,the bigger the temperature drop becomes.The temperature variation curves in the process of coal gas desorption under different particle sizes are fitted,and they comply with the exponential function.The research results lay the theoretical and experimental foundation for non-contact prediction on working face of coal and gas outburst with infrared thermal image technology. 展开更多
关键词 gas Desorption temperature field Infrared image
下载PDF
Characteristics and accumulation mechanisms of the Dongfang 13-1 high temperature and overpressured gas field in the Yinggehai Basin, the South China Sea 被引量:12
2
作者 XIE YuHong HUANG BaoJia 《Science China Earth Sciences》 SCIE EI CAS 2014年第11期2799-2807,共9页
The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) ... The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) and the temperature is as high as 143°C (geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type Ⅱ2-Ⅲ kero- gens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C2 ranging from -30.76%o to -37.52%o and δ13C2 ranging from -25.02%o to -25.62%o. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to under- compaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that (1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas; (2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and (3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration. 展开更多
关键词 Dongfang 13-1 high temperature and overpressured gas field accumulation mechanism diapiric belt Yinggehai Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部