期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Conjugate Heat Transfer Investigation on the Cooling Performance of Air Cooled Turbine Blade with Thermal Barrier Coating 被引量:5
1
作者 JI Yongbin MA Chao +1 位作者 GE Bing ZANG Shusheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期325-335,共11页
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is perf... A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side. 展开更多
关键词 gas turbine blade thermal barrier coating cooling efficiency conjugate heat transfer
原文传递
An Experimental Investigation of Heat Transfer Characteristics for Steam Cooling in a Rectangular Channel with Parallel Ribs
2
作者 MA Chao CHEN Xiaoling +2 位作者 WANG Jianfei ZANG Shusheng JI Yongbin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第5期454-464,共11页
An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was... An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper. 展开更多
关键词 gas turbine cooling Steam cooling Rib-roughed channel Local heat transfer enhancement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部