期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
Influence of the Ambient Temperature on the Efficiency of Gas Turbines
1
作者 Mahdi Goucem 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2265-2279,共15页
In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this o... In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates. 展开更多
关键词 gas turbine inlet COOLING computational fluid dynamics(CFD) POWER thermal efficiency
下载PDF
Desired Dynamic Equation for Primary Frequency Modulation Control of Gas Turbines
2
作者 Aimin Gao Xiaobo Cui +2 位作者 Guoqiang Yu Jianjun Shu Tianhai Zhang 《Energy Engineering》 EI 2024年第5期1347-1361,共15页
Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency cont... Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential. 展开更多
关键词 gas turbine primary frequency modulation(PFM) desired dynamic equation(DDE) proportion-integral(PI)
下载PDF
Development of Cast Superalloys for Gas Turbines in China
3
作者 陈荣章 陈婉华 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第2期92-97,共6页
As in other countries,significant achievements in the research of cast superalloys for many years have also been obtained in China.These results are important contribu- tion to the development of aero and land-based g... As in other countries,significant achievements in the research of cast superalloys for many years have also been obtained in China.These results are important contribu- tion to the development of aero and land-based gas tur- bine engines. 展开更多
关键词 cast superalloy gas turbine
下载PDF
Preparation and property of seal coating for gas turbine compressor
4
作者 余沛坰 刘中华 +2 位作者 郑健生 徐伏根 陈千宝 《China Welding》 CAS 2024年第1期60-64,共5页
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm... Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability. 展开更多
关键词 gas turbine compressor seal coating MICROSTRUCTURE mechanical property abradability
下载PDF
Performance assessment of simple and modified cycle turboshaft gas turbines 被引量:4
5
作者 Barinyima Nkoi Pericles Pilidis Theoklis Nikolaidis 《Propulsion and Power Research》 SCIE 2013年第2期96-106,共11页
This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing... This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing simple cycle(SC)and its projected modifiedcycles for civil helicopter application.Technically,thermal efficiency,specific fuel consump-tion,and power output are of paramount importance to the overall performance of gas urbineengines.In course of carrying out this research,turbomatch software established at CranfieldUniversity based on gas turbine theory was applied to conduct simulation of a simple cycle(baseline)two-spool helicopter turboshaft engine model with free power turbine.Similarly,some modified gas urbine cycle configurations incoporating unconventional components,such as engine cycle with low pressure compressor(LPC)zero-staged,recuperated enginecycle,and intercooled/recuperated(ICR)engine cycle,were also simulated.In doing so,designpoint(DP)and off-design point(OD)performances of the engine models were established.Thepercentage changes in performance parameters of the modified cycle engines over the simplecycle were evaluated and it was found that to a large extent,the modified engine cycles withunconventional components exhibit better performances in terms of thermal efficiency andspecific fuel consumption than the traditional simple cycle engine.This research made use ofpublic domain open source references. 展开更多
关键词 gas turbines Turboshaft Technical performance INTERCOOLED Recuperated Low pressure compressor(LPC)zero-staged Simple cycle Comparative assessment
原文传递
A combined technique of Kalman filter, artificial neural network and fuzzy logic for gas turbines and signal fault isolation 被引量:7
6
作者 Simone TOGNI Theoklis NIKOLAIDIS Suresh SAMPATH 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期124-135,共12页
The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the perfo... The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the performance-based diagnostics of single and multiple failures on a two-spool engine. The aim of this technique is to combine the strength of each methodology and provide a high success rate for single and multiple failures with the presence of measurement malfunctions. A combination of KF(Kalman Filter), ANN(Artificial Neural Network) and FL(Fuzzy Logic) is used in this research in order to improve the success rate, to increase the flexibility and the number of failures detected and to combine the strength of multiple methods to have a more robust solution. The Kalman filter has in his strength the measurement noise treatment, the artificial neural network the simulation and prediction of reference and deteriorated performance profile and the fuzzy logic the categorization flexibility, which is used to quantify and classify the failures. In the area of GT(Gas Turbine) diagnostics, the multiple failures in combination with measurement issues and the utilization of multiple methods for a 2-spool industrial gas turbine engine has not been investigated extensively.This paper reports the key contribution of each component of the methodology and brief the results in the quantification and classification success rate. The methodology is tested for constant deterioration and increasing noise and for random deterioration. For the random deterioration and nominal noise of 0.4%, in particular, the quantification success rate is above 92.0%, while the classification success rate is above 95.1%. Moreover, the speed of the data processing(1.7 s/sample)proves the suitability of this methodology for online diagnostics. 展开更多
关键词 Artificial neural network Data analytics Data filtering DIAGNOSTICS Fuzzy logic gas turbine Kalman filter Performance-based diagnostics
原文传递
Feasibility of Pulse Combustion in Micro Gas Turbines 被引量:2
7
作者 Juha Honkatukia Esa Saari +2 位作者 Timo Knuuttila Jaakko Larjola Jari Backman 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第5期466-473,共8页
In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas tur-bine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator... In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas tur-bine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator is in the order of 25 %, but the efficiency of a very small gas turbine (2...6 kW) in the order of 4...6 % (or 8... 12 % with an op- timal recuperator). This is mainly a result of the efficiency decrease in kinetic compressors, due to the Reynolds number effect. Losses in decelerating flow in a flow passage are sensitive to the Reynolds number effects. In con- trary to the compression, the efficiency of expansion in turbines is not so sensitive to the Reynolds number; very small turbines are made with rather good efficiency because the flow acceleration stabilizes the boundary layer. This study presents a system where the kinetic compressor of a gas turbine is replaced with a pulse combustor. The combustor is filled with a combustible gas mixture, ignited, and the generated high pressure gas is expanded in the turbine. The process is repeated frequently, thus producing a pulsating flow to the turbine; or almost a uni- form flow, if several parallel combustors are used and triggered a/ternately in a proper way. Almost all the com- pression work is made by the temperature increase from the combustion. This gas turbine type is investigated theoretically and its combustor also experimentally with the conclusion that in a 2 kW power size, the pulse flow gas turbine is not as attractive as expected due to the big size and weight of parallel combustors and due to the ef- ficiency being in the order of 8 % to 10 %. However, in special applications having a very low power demand, below 1000 W, this solution has better properties when compared to the conventional gas turbine and it could be worth of a more detailed investigation. 展开更多
关键词 gas turbine pulse combustion micro size low Reynolds number
原文传递
Performance of small-scale aero-derivative industrial gas turbines derived from helicopter engines 被引量:2
8
作者 Barinyima Nkoi Pericles Pilidis Theoklis Nikolaidis 《Propulsion and Power Research》 SCIE 2013年第4期243-253,共11页
This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines.More particularly,investigation was made of technical perfor... This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines.More particularly,investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation,combined heat and power concept,rotating equipment driving,and/or allied processes.The investigation was done by carrying out preliminary design and performance simulation of a simple cycle(baseline)two-spool small-scale aero-derivative turboshaft engine model,and some advanced counterpart aero-derivative configurations.The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW.The baseline model was derived from the conversion of an existing helicopter engine model.In doing so,design point and off-design point performances of the engine models were established.In comparing their performances,it was observed that to a large extent,the advanced engine cycles showed superior performance in terms of thermal efficiency,and specific fuel consumption.In numerical terms,thermal efficiencies of recuperated engine cycle,and intercooled/recuperated engine cycles,over the simple cycle at DP increased by 13.5%,and 14.5%respectively,whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%,and 13%respectively.This research relied on open access public literature for data. 展开更多
关键词 gas turbine Small-scale aero-derivatives Thermal efficiency Intercooled/Recuperated Simple-cycle Specific-fuel-consumption Performance assessment Helicopter engine
原文传递
Dynamic simulation of gas turbines via feature similarity-based transfer learning 被引量:1
9
作者 Dengji ZHOU Jiarui HAO +2 位作者 Dawen HUANG Xingyun JIA Huisheng ZHANG 《Frontiers in Energy》 SCIE CSCD 2020年第4期817-835,共19页
Since gas turbine plays a key role in electricity power generating,the requirements on the safety and reliability of this classical thermal system are becoming gradually strict.With a large amount of renewable energy ... Since gas turbine plays a key role in electricity power generating,the requirements on the safety and reliability of this classical thermal system are becoming gradually strict.With a large amount of renewable energy being integrated into the power grid,the request of deep peak load regulation for satisfying the varying demand of users and maintaining the stability of the whole power grid leads to more unstable working conditions of gas turbines.The startup,shutdown,and load fluctuation are dominating the operating condition of gas turbines.Hence simulating and analyzing the dynamic behavior of the engines under such instable working conditions are important in improving their design,operation,and maintenance.However,conventional dynamic simulation methods based on the physic differential equations is unable to tackle the uncertainty and noise when faced with variant real-world operations.Although data-driven simulating methods,to some extent,can mitigate the problem,it is impossible to perform simulations with insufficient data.To tackle the issue,a novel transfer learning framework is proposed to transfer the knowledge from the physics equation domain to the real-world application domain to compensate for the lack of data.A strong dynamic operating data set with steep slope signals is created based on physics equations and then a feature similarity-based learning model with an encoder and a decoder is built and trained to achieve feature adaptive knowledge transferring.The simulation accuracy is significantly increased by 24.6%and the predicting error reduced by 63.6%compared with the baseline model.Moreover,compared with the other classical transfer learning modes,the method proposed has the best simulating performance on field testing data set.Furthermore,the effect study on the hyper parameters indicates that the method proposed is able to adaptively balance the weight of learning knowledge from the physical theory domain or from the real-world operation domain. 展开更多
关键词 gas turbine dynamic simulation DATA-DRIVEN transfer learning feature similarity
原文传递
A data-driven approach for predicting long-term degradation of a fleet of micro gas turbines 被引量:1
10
作者 Tomas Olsson Enislay Ramentol +2 位作者 Moksadur Rahman Mark Oostveen Konstantinos Kyprianidis 《Energy and AI》 2021年第2期30-44,共15页
Predictive health monitoring of micro gas turbines can significantly increase the availability and reduce the operating and maintenance costs.Methods for predictive health monitoring are typically developed for large-... Predictive health monitoring of micro gas turbines can significantly increase the availability and reduce the operating and maintenance costs.Methods for predictive health monitoring are typically developed for large-scale gas turbines and have often focused on single systems.In an effort to enable fleet-level health monitoring of micro gas turbines,this work presents a novel data-driven approach for predicting system degradation over time.The approach utilises operational data from real installations and is not dependent on data from a reference system.The problem was solved in two steps by:1)estimating the degradation from time-dependent variables and 2)forecasting into the future using only running hours.Linear regression technique is employed both for the estimation and forecasting of degradation.The method was evaluated on five different systems and it is shown that the result is consistent(r>0.8)with an existing method that computes corrected values based on data from a reference system,and the forecasting had a similar performance as the estimation model using only running hours as an input. 展开更多
关键词 Fleet monitoring Micro gas turbine Machine learning Health monitoring Predictive maintenance Power generation
原文传递
Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator
11
作者 Weiting Jiang Tingni He +2 位作者 Chongyang Wang Weiguo Pan Jiang Liu 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1447-1461,共15页
Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowte... Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowtemperature channels are performed and,the calculated results are compared with experimental data(to verify the reliability of the numerical method).Second,the flow field structure of the low-temperature side channel is critically analyzed,leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven,and its resistance is significantly higher than that in the high-temperature side.Therefore,five alternate structural schemes are proposed for the optimization of the low-temperature side.In particular,to reduce the flow velocity in the upper channel,the rib length of each channel at the inlet of the low-temperature side region is adjusted.The performances of the 5 schemes are compared,leading to the identification of the configuration able to guarantee a uniform flow rate and minimize the pressure drop.Finally,the heat transfer performance of the optimized recuperator structure is evaluated,and it is shown that the effectiveness of the recuperator is increased by 1.5%. 展开更多
关键词 Micro gas turbine RECUPERATOR structural optimization numerical simulation
下载PDF
PIV MEASUREMENT FOR SWIRLER FLOW FIELD IN GAS TURBINE COMBUSTOR 被引量:9
12
作者 颜应文 李井华 +3 位作者 徐榕 邓远灏 徐华胜 钟世林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期307-317,共11页
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo... The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor. 展开更多
关键词 swirler flow field gas turbine combustor particle image velocimetry primary recirculation zone length
下载PDF
Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure
13
作者 Jun-hang Xu Bao-zhi Li +6 位作者 Zhao-wei Song Yun-bao Gao Jing-ming Li Yu Wang Qiu-lin Wen Heng Cao Zeng-rui Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第4期319-326,共8页
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects... The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs. 展开更多
关键词 gas turbine casing crack defects 3D printed sand mold topological structure high-temperature concession
下载PDF
Gas Valorization in the Republic of Congo: Production of Electricity from National Gas Reserves
14
作者 Prince Valdano Itoua Durell Esperance Ndinga Manguet 《Natural Resources》 2021年第5期164-180,共17页
The environmental impact of greenhouse gases based on natural gas flaring influences the rate of gas recovery around the world. In the Republic of Congo, the natural gas reserve in 2019 is estimated at 90 billion cubi... The environmental impact of greenhouse gases based on natural gas flaring influences the rate of gas recovery around the world. In the Republic of Congo, the natural gas reserve in 2019 is estimated at 90 billion cubic meters (BCM). In this study, from the Congolese gas reserve we used five gas turbines with a capacity of 150 MW each;these five turbines consume 1.69 billion cubic meters (BCM)/year for the power of 273.750 MW and consumption of 6.57 billion kilowatt-hours. The results of this study revealed that an investment capital of 192,305,137 euros was required with a net profit of 9,581,250 euros at an annual rate of return of 4.98% with an investment payback period of approximately 20 years. This will allow the Congolese government to accomplish its policy of valuing gas and developing the country;the electricity produced by the National Petroleum Company of Congo (SNPC) will be sold to the Electrical Energy of Congo (E<sup>2</sup>C) at 0.06 euro/kWh. 展开更多
关键词 gas Valorization gas turbines Wire gas Technology (GTW) Electrical Energy of Congo (E2C) National Petroleum Company of Congo (SNPC)
下载PDF
Preparation and characterization of LPPS NiCoCrAlYTa coatings for gas turbine engine 被引量:4
15
作者 洪瑞江 周克崧 +2 位作者 王德政 朱晖朝 邝子奇 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期567-571,共5页
NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the... NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation. 展开更多
关键词 low pressure plasma spraying hot corrosion COATING gas turbine engine MCRALY
下载PDF
Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine 被引量:2
16
作者 HUANG Di CHEN Jin-wei +2 位作者 ZHOU Deng-ji ZHANG Hui-sheng SU Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期662-670,共9页
Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle... Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature.Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures,therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research.This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine.Detailed HAT cycle modelling of saturator,gas turbine and heat exchanger are carried out based on the modular modeling method.The models are verified by simulations on the aeroderivative three-shaft gas turbine.Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water.However,the efficiency still increases by 0.16%when the HAT cycle runs at the designed power of the simple cycle.Furthermore,simulations considering turbine modifications show that the efficiency could be significantly improved.The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine. 展开更多
关键词 humid air turbine aeroderivative gas turbine SATURATOR SIMULATION
下载PDF
Analysis on Causes of Scaling in Flue Gas Turbine of FCCU and Countermeasures 被引量:2
17
作者 Hou Dianguo 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第2期65-74,共10页
Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and cataly... Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and catalysts,and operating conditions of the reactor and regenerator.Some countermeasures were proposed for preventing scale deposition in flue gas turbine of FCCU. 展开更多
关键词 fluid catalytic cracking CATALYST REGENERATOR flue gas turbine scale deposition
下载PDF
Thermodynamic Analysis of Alternative Marine Fuels for Marine Gas Turbine Power Plants 被引量:1
18
作者 Mohamed M. El Gohary Nader R. Ammar 《Journal of Marine Science and Application》 CSCD 2016年第1期95-103,共9页
The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International M... The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel. 展开更多
关键词 ship emissions natural gas HYDROGEN gas turbine thermodynamic analysis gas turbine power plants greenhouse gases (GHGs)
下载PDF
A Strong Tracking Filtering Approach for Health Estimation of Marine Gas Turbine Engine 被引量:1
19
作者 Qingcai Yang Shuying Li Yunpeng Cao 《Journal of Marine Science and Application》 CSCD 2019年第4期542-553,共12页
Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estima... Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estimate them only based on the available measurement parameters.Kalman filter-based approaches are the most commonly used estimation approaches;how-ever,the conventional Kalman filter-based approaches have a poor robustness to the model uncertainty,and their ability to track the mutation condition is influenced by historical data.Therefore,in this paper,an improved Kalman filter-based algorithm called the strong tracking extended Kalman filter(STEKF)approach is proposed to estimate the gas turbine health parameters.The analytical expressions of Jacobian matrixes are deduced by non-equilibrium point analytical linearization to address the problem of the conventional approaches.The proposed approach was used to estimate the health parameters of a two-shaft marine gas turbine engine in the simulation environment and was compared with the extended Kalman filter(EKF)and the unscented Kalman filter(UKF).The results show that the STEKF approach not only has a computation cost similar to that of the EKF approach but also outperforms the EKF approach when the health parameters change abruptly and the noise mean value is not zero. 展开更多
关键词 gas turbine Health parameter estimation ExtendedKalman filter UnscentedKalman filter StrongtrackingKalman filter Analytical linearization
下载PDF
Application of Supercritical CO2 Gas Turbine for the Fossil Fired Thermal Plant 被引量:13
20
作者 Y.Muto S. Ishiyama +2 位作者 Y. Kato T. Ishizuka M. Aritomi 《Journal of Energy and Power Engineering》 2010年第9期7-15,共9页
A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature rang... A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes. 展开更多
关键词 Supercritical CO2 cycle gas turbine heat exchanger thermal power plant thermal efficiency PCHE CO2 heater
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部