期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ultrasound contrast agents from microbubbles to biogenic gas vesicles 被引量:2
1
作者 Wenlong Zeng Xiuli Yue Zhifei Dai 《Medical Review》 2023年第1期31-48,共18页
Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features:such as non-toxicity,intravenous inject-ability,ability to cross the pulmonary capillary bed,and s... Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features:such as non-toxicity,intravenous inject-ability,ability to cross the pulmonary capillary bed,and significant enhancement of echo signals for the duration of the examination,resulting in essential preclinical and clinical applications.The use of microbubbles functional-ized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging.Nevertheless,it is very challenging to utilize targeted microbubbles for molecular imaging of extra-vascular targets due to their size.A series of acoustic nanomaterials have been developed for breaking free from this constraint.Especially,biogenic gas vesicles,gas-filled protein nanostructures from microorganisms,were engineered as thefirst biomolecular ultrasound contrast agents,opening the door for more direct visual-ization of cellular and molecular function by ultrasound imaging.The ordered protein shell structure and unique gasfilling mechanism of biogenic gas vesicles endow them with excellent stability and attractive acoustic responses.What’s more,their genetic encodability enables them to act as acoustic reporter genes.This article reviews the upgrading progresses of ultrasound contrast agents from microbubbles to biogenic gas vesicles,and the opportu-nities and challenges for the commercial and clinical translation of the nascentfield of biomolecular ultrasound. 展开更多
关键词 acoustic nanomaterials acoustic reporter genes biogenic gas vesicles MICROBUBBLES ultrasound contrast agents ultrasound molecular imaging
原文传递
Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity:Enhanced photo induced carriers separation efficiency and mechanism insight 被引量:3
2
作者 Jiangsu Wen Changchang Ma +6 位作者 Pengwei Huo Xinlin Liu Maobin Wei Yang Liu Xin Yao Zhongfei Ma Yongsheng Yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第10期98-107,共10页
Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfull... Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO2^-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability. 展开更多
关键词 Nano-semiconductor vesicle CdSe gas template Photocatalyst
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部