期刊文献+
共找到900篇文章
< 1 2 45 >
每页显示 20 50 100
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:3
1
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 Scientific drilling project Oil and gas preservation Source rock Quemo Co Formation Oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
Experimental study on secondary air mixing along the bed height in a circulating fluidized bed with a multitracer-gas method
2
作者 Qingyu Zhang Leming Cheng +3 位作者 Kun Li Qixun Kang Qiang Guo Chaogang Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期54-62,共9页
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe... A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic. 展开更多
关键词 Circulating fluidized bed Secondary air injection gas mixing Multitracer-gas method
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
3
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Intelligent risk identification of gas drilling based on nonlinear classification network
4
作者 Wen-He Xia Zong-Xu Zhao +4 位作者 Cheng-Xiao Li Gao Li Yong-Jie Li Xing Ding Xiang-Dong Chen 《Petroleum Science》 SCIE EI CSCD 2023年第5期3074-3084,共11页
During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent ... During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent classification models.Combined with the structural features of data samples obtained from monitoring while drilling,this paper uses convolution algorithm to extract the correlation features of multiple monitoring while drilling parameters changing with time,and applies RBF network with nonlinear classification ability to classify the features.In the training process,the loss function component based on distance mean square error is used to effectively adjust the best clustering center in RBF.Many field applications show that,the recognition accuracy of the above nonlinear classification network model for gas production,water production and drill sticking is 97.32%,95.25%and 93.78%.Compared with the traditional convolutional neural network(CNN)model,the network structure not only improves the classification accuracy of conditions in the transition stage of conditions,but also greatly advances the time points of risk identification,especially for the three common risk identification points of gas production,water production and drill sticking,which are advanced by 56,16 and 8 s.It has won valuable time for the site to take correct risk disposal measures in time,and fully demonstrated the applicability of nonlinear classification neural network in oil and gas field exploration and development. 展开更多
关键词 gas drilling Intelligent identification of drilling risk Nonlinear classification RBF Neural Network K-means algorithm
下载PDF
Reliability analysis of retractable drill bit with air reverse circulation used for drilling while casing
5
作者 WANG Minqi YIN Qilei +3 位作者 CHEN Baoyi QI Bo BO Kun CAO Pinlu 《Global Geology》 2023年第1期47-56,共10页
Casing-while-drilling(CWD)with down the hole(DTH)hammer drilling technology has been widely used in unconsolidated formations,due to its advantages in protecting the borehole wall,excellent rock cuttings capacity,and ... Casing-while-drilling(CWD)with down the hole(DTH)hammer drilling technology has been widely used in unconsolidated formations,due to its advantages in protecting the borehole wall,excellent rock cuttings capacity,and fast penetration rate in hard rock.As an important component of the CWD system,the structure of the retractable drill bit needs not only to ensure to form stronger reverse circulation,but also to be expandable or retractable as needed,otherwise the drill bit cannot be lift and put down smoothly in the casing,and may lead to drilling accidents.This paper developed a new type of reverse circulation DTH hammer drill bit used for CWD drilling technology.The retractable performance of this type of drill bit is studied using ADAMS software.The results show that it is smoothly expandable and retractable as designed under the conditions of the weight of the bit(WOB)of 0.5–2.0 t and the rotation speed of 30–60 r/min.To investigate the reverse circulation effect of the drill bit,Fluent software was used to simulate the flow characteristic inside it.The simulation results indicated that it can form strong reverse circulation,and the entrainment ratio h can reach 9.5%. 展开更多
关键词 DTH hammer drilling air reverse circulation casing-while-drilling retractable drill bit
下载PDF
New development of theories in gas drilling 被引量:3
6
作者 Guo Boyun Gao Deli 《Petroleum Science》 SCIE CAS CSCD 2013年第4期507-514,共8页
Theories established from engineering fundamentals have been of great value in supporting the design and execution of drilling operations in gas drilling where gas is used as a drilling fluid.This work presents an ove... Theories established from engineering fundamentals have been of great value in supporting the design and execution of drilling operations in gas drilling where gas is used as a drilling fluid.This work presents an overview of new theories developed in recent years for special gas drilling operations including horizontal wells.These new theories are found in the areas of gas-mixture flow hydraulics in deviated and horizontal boreholes,hole cleaning of solids accumulation,hole cleaning of formation water,flow diverging for washout control,bit orifice optimization,and depression of formation water influx.This paper provides drilling engineers with updated mathematical models and methods for optimizing design to improve gas drilling performance. 展开更多
关键词 air drilling gas drilling nitrogen drilling design optimization theory development
下载PDF
Microwave propagation in air drilling 被引量:4
7
作者 Meng Xiaofeng Chen Yijian +1 位作者 Zhou Jing Meng Yingfeng 《Petroleum Science》 SCIE CAS CSCD 2010年第3期390-396,共7页
This paper examines the feasibility in air drilling of transmitting down-hole signals by using microwaves. Firstly the basic theory of microwave propagation in the drill-pipe or casing was studied, including power los... This paper examines the feasibility in air drilling of transmitting down-hole signals by using microwaves. Firstly the basic theory of microwave propagation in the drill-pipe or casing was studied, including power loss, cutoff wavelength, and dust scattering. Theoretical analysis indicates that the microwave propagation distance in a cb214mm casing can easily reach 5,000 m. When the effect of dust particles is taken into account, the propagation distance decreases to 2,000 m. We conducted both laboratory experiments and field tests in casings commonly used in oil fields. The field tests show that the effective propagation distance of microwave in the casing is about 1,300 m. The experimental results do not match well with theoretical prediction, but are acceptable. In future commercial applications, by applying multiple relay amplifiers, the microwave propagation distance could be long enough for most drilling wells. 展开更多
关键词 MICROWAVE WAVEGUIDE drill-pipe CASING air drilling
下载PDF
Numerical Analysis of Wellbore Instability in Gas Hydrate Formation During Deep-Water Drilling 被引量:8
8
作者 ZHANG Huaiwen CHENG Yuanfang +2 位作者 LI Qingchao YAN Chuanliang HAN Xiuting 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期8-16,共9页
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive t... Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7℃, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened. 展开更多
关键词 gas HYDRATE wellbore INSTABILITY drilling fluid phase EQUILIBRIUM temperature plastic strain numerical simulation
下载PDF
Gas-hydrate formation,agglomeration and inhibition in oil-based drilling fluids for deep-water drilling 被引量:9
9
作者 Fulong Ning Ling Zhang +2 位作者 YunzhongTu Guosheng Jiang Maoyong Shi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期234-240,共7页
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste... One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF. 展开更多
关键词 oil-based drilling fluids gas hydrates water cut formation and agglomeration INHIBITOR
下载PDF
Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations 被引量:9
10
作者 Wei-Ji Wang Zheng-Song Qiu +2 位作者 Han-Yi Zhong Wei-An Huang Wen-Hao Dai 《Petroleum Science》 SCIE CAS CSCD 2017年第1期116-125,共10页
Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radica... Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive mono- mer N-isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA- St) nanospheres at 80 ℃, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD- SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability 展开更多
关键词 Nanoparticle plugging agent Polymermicrospheres Thermo-sensitive polymer Wellborestability - Shale gas - drilling fluid
下载PDF
Relationship between Formation Water Rate,Equivalent Penetration Rate and Volume Flow Rate of Air in Air Drilling 被引量:2
11
作者 Wang Kexiong Zhang Laibin Jiang Hongwei 《Petroleum Science》 SCIE CAS CSCD 2007年第4期62-65,共4页
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during a... Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling. 展开更多
关键词 air drilling Angel model modified model formation water rate minimum volume flow rate equivalent penetration rate
下载PDF
The characteristics of recycling gas drilling technology 被引量:3
12
作者 Yang Shunji Liu Gonghui Li Jun 《Petroleum Science》 SCIE CAS CSCD 2012年第1期59-65,共7页
Recycling gas drilling is a new drilling technology. This paper can be divided into three parts, with the purpose of introducing and analyzing the characteristics of this new technology. First, the major equipment cha... Recycling gas drilling is a new drilling technology. This paper can be divided into three parts, with the purpose of introducing and analyzing the characteristics of this new technology. First, the major equipment characteristic of this technology was introduced. Secondly, compared with conventional gas drilling, Angel's model was used to analyze the wellbore flow characteristics. Due to the closed loop and the effect of back pressure caused by the equipment, the gas flow rate decreases dramatically during drilling. Apart from this, it is also found that the kinetic energy at the casing shoe is always smaller than that at the top of the collar. The proposing of the drilling limit concept points out the basic difference between the two gas drilling technologies. Lastly, according to the results of the theoretical analysis, gas supplement operations for the wellbore must be conducted. Thus, two gas supplement schemes are presented in this paper, to provide some guidance for field operations. 展开更多
关键词 Recycling gas drilling technology major equipment flow characteristics comparativeanalysis gas supplement scheme
下载PDF
Experimental study of low-damage drilling fluid to minimize waterblocking of low-permeability gas reservoirs 被引量:4
13
作者 Zhang Hongxia Yan Jienian +2 位作者 Lu Yu Shu Yong Zhao Shengying 《Petroleum Science》 SCIE CAS CSCD 2009年第3期271-276,共6页
This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Ba... This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field. 展开更多
关键词 Low-permeability gas reservoir waterblocking ideal packing theory (IPT) film-forming agent drilling fluid
下载PDF
Evolution and application of in-seam drilling for gas drainage 被引量:13
14
作者 Frank Hungerford Ting Ren Naj Aziz 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期534-544,共11页
The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the ... The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology. 展开更多
关键词 gas outbursts In-seam drilling gas drainage Directional drilling technology gas content determination Geological exploration
下载PDF
Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments 被引量:3
15
作者 程远方 李令东 +1 位作者 S. MAHMOOD 崔青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1421-1432,共12页
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and p... As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS. 展开更多
关键词 gas hydrate bearing sediment wellbore stability fluid-solid coupling mechanical property drilling fluid
下载PDF
Critical condition study of borehole stability during air drilling 被引量:1
16
作者 Deng Jingen Zou Linzhan +4 位作者 Tan Qiang Yan Wei Gao Deli Zhang Hanlin Yan Xiuliang 《Petroleum Science》 SCIE CAS CSCD 2009年第2期158-165,共8页
The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole exca... The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole excavated in strain-softening rock. Damage evolution around the borehole was studied by tracking acoustic emission. The study indicates that excavation damaged zone (EDZ) is formed around borehole because of stress concentration after the borehole is excavated. There is a critical condition for borehole stability; the borehole will collapse when the critical damage condition is reached. The critical condition of underground excavation exists not only in elastic and ideal plastic material but in strainsoftening material as well. The research is helpful to developing an evaluation method of borehole stability during air drilling. 展开更多
关键词 Borehole stability air drilling critical condition
下载PDF
Simulation of Shallow Gas Invasion Process During Deepwater Drilling and Its Control Measures 被引量:1
17
作者 LEI Yani SUN Jin WANG Guangjian 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第3期707-718,共12页
Shallow gas is considered one of the most serious geological hazards in deepwater drilling because it has the characteristics of suddenness and is difficult to deal with.To perform a quantitative evaluation of shallow... Shallow gas is considered one of the most serious geological hazards in deepwater drilling because it has the characteristics of suddenness and is difficult to deal with.To perform a quantitative evaluation of shallow gas risk during deepwater drilling,a numerical model for calculating gas invasion volume is established based on gas-water two-phase flow theory.The model considers the effect of the dynamic drilling process,and the influencing factors which affect the gas invasion volume are analyzed.Results indicate that the gas invasion rate and accumulated gas invasion volume increase with increasing bottom-hole pressure difference.A linear relationship exists between gas invasion volume and bottom-hole pressure difference.The duration of gas invasion increases as the shallow gas zone thickness increases,and the accumulated gas invasion volume grows as shallow gas zone thickness increases.The increase in formation permeability,water depth,and rate of penetration will enhance the gas invasion rate.However,these three factors can hardly affect the accumulated gas invasion volume.The gas flow rate increases significantly with increasing burial depth of shallow gas.On the basis of influencing factor analysis,a series of methods that consider different risk levels is proposed to control shallow gas,which can provide a reference for the prevention of shallow gas disasters during deepwater drilling. 展开更多
关键词 shallow gas deepwater drilling dynamic drilling process gas invasion gas invasion rate
下载PDF
Microscopic properties and sealing performance of new gas drainage drilling sealing material 被引量:4
18
作者 Zhai Cheng Yu Xu +2 位作者 Ni Guanhua Li Min Hao Zhiyong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期474-479,共6页
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat... The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly. 展开更多
关键词 drilling sealing material Microcosmic structure gas drainage Sealing performance
下载PDF
A dynamic managed pressure well-control method for rapid treatment of gas kick in deepwater managed pressure drilling 被引量:1
19
作者 Hong-Wei Yang Jun Li +4 位作者 Ji-Wei Jiang Hui Zhang Bo-Yun Guo Geng Zhang Wang Chen 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2297-2313,共17页
During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas... During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas kick detection of MPD is lost.The dynamic managed pressure well-control(MPWC)method can be used to rapidly treat gas kick in deepwater MPD.In this paper,considering the effect of large-variable-diameter annulus and complex wellbore temperature in deepwater drilling,a simplified model of non-isothermal gas-liquid two-phase flow was established for dynamic deepwater MPWC simulation.Using this model,the response characteristics of outlet flow and wellhead backpressure were investigated.The results indicated that the gas fraction,outlet liquid flow rate,pit gain and wellhead backpressure presented complex alternating characteristics when gas moved upwards in the wellbore due to the large-variable-diameter annulus.The outlet liquid flow rate would be lower than the inlet flow rate and the pit gain would decrease before the gas moved to the wellhead.The variation trend of the wellhead backpressure was consistent with that of the pit gain.When the gas-liquid mixture passed through the choke,the expansion or compression of the gas caused part of the choke pressure drop to be supplemented or unloaded,delaying the response rate of the wellhead backpressure.The wellbore temperature,borehole diameter and seawater depth had different effects on outlet flow rate,pit gain and wellhead backpressure.This research could provide a new idea for well control methods in deepwater managed pressure drilling. 展开更多
关键词 gas kick Managed pressure well-control gas-liquid two-phase flow Wellhead backpressure Outlet flow characteristics Deepwater managed pressure drilling
下载PDF
Acidolysis hydrocarbon characteristics and significance of sediment samples from the ODP drilling legs of gas hydrate 被引量:1
20
作者 Xun Sun Chunyan Sun +3 位作者 Jiangyun Xiang Jihui Jia Panfeng Li Zhibin Zhang 《Geoscience Frontiers》 SCIE CAS 2012年第4期515-521,共7页
To study on the significance and basis of acidolysis index to China marine gas hydrate exploring, since 2006, 111 samples derived from Leg 164 and 204 of the Ocean Drilling Program (ODP) were analyzed in the experim... To study on the significance and basis of acidolysis index to China marine gas hydrate exploring, since 2006, 111 samples derived from Leg 164 and 204 of the Ocean Drilling Program (ODP) were analyzed in the experiment center of China Petroleum Exploration Research Institute to obtain data on acidolysis hydrocarbon index and methane carbon isotopes by the gas chromatography (GC) of PE AutoSystem XL and isotope mass spectrometer (IRMS) of Finnigan MAT25 I. Through these, we study the reliability of the acidolysis method and characterize the gas hydrate potential. The results show that the acidolysis hydrocarbon index has a stable correspondence with the Gas Hydrate Stability Zone (GHSZ) in the ODE and that there are clear abnormal signs in shallow samples that might reliably reflect the existence of authigenic carbonate caused by hydrocarbon migration from bottom hydrate. We therefore propose that the ability to characterize the acidolysis hydrocarbon is crucial to submarine gas hydrate exploration in China. 展开更多
关键词 Ocean drilling Program (ODP) gas Hydrate Stability Zone (OHSZ) Acidolysis hydrocarbon index Acidolysis hydrocarbon methane carbon isotopes Geochemical characteristics
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部