Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using l...Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.展开更多
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic re...Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benef...Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benefits,and advantages.Addressing these limitations requires the application of objective criteria to assess the effectiveness of each diagnostic method.The diagnostic process is dynamic and requires a consistent algorithm,progressing from clinical subjective data,such as patient history(anamnesis),and objective findings to diagnostics ex juvantibus.Caution must be exercised when interpreting diagnostic results,and there is an urgent need for better diagnostic tests.In the absence of such tests,preliminary criteria and a diagnosis ex juvantibus must be relied upon.Diagnostic imaging methods are critical stages in the diagnostic workflow,with sensitivity,specificity,and accuracy serving as the primary criteria for evaluating clinical,laboratory,and instrumental symptoms.A comprehensive evaluation of all available diagnostic data guarantees an accurate diagnosis.The“gold standard”for diagnosis is typically established through either the results of a pathological autopsy or a lifetime diagnosis resulting from a thorough examination using all diagnostic methods.展开更多
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe...A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.展开更多
Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three dif...Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three different types of impurities are generally available in the pharmaceutical’s product specification: organic impurities, inorganic impurities, and residual solvents. Residual solvents are organic volatile chemicals used or generated during the manufacturing of drug substances or drug products. Purpose: The aim of this study is to develop a cost-effective gas chromatographic method for the identification and quantification of some commonly used solvents—methanol, acetone, isopropyl alcohol (IPA), methylene chloride, ethyl acetate, tetrahydrofuran (THF), benzene, toluene, and pyridine—in pharmaceutical product manufacturing. This method will be able to identify and quantify the multiple solvents within a single gas chromatographic procedure. Method: A gas chromatography (GC) equipped with a headspace sampler and a flame ionization detector, and a column DB 624, 30-meter-long × 0.32-millimeter internal diameter, 1,8 μm-thick, Brand-Agilent was used to develop this method. The initial GC oven temperature was 40°C and held for 5 minutes. It was then increase to 80˚C at a rate of 2˚C per minute, followed by a further increase to 225˚C at a rate of 30˚C per minute, with a final hold at 225˚C for 10 minutes. Nitrogen was used as a carrier gas at a flow rate of 1.20 mL per minute. Dimethyl sulfoxide (DMSO) was selected as sample solvent. Results: The developed method is precise and specific. The percent RSD for the areas of six replicate injections of this gas chromatographic method was within 10.0 and the recovery result found within 80.0% to 120.0%.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because o...It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implic...Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime.展开更多
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their appl...The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively...The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.展开更多
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of SINOPEC.
文摘Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金supported by funds from the National Natural Science Foundation of China (Grant No. T2341008)。
文摘Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
文摘Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benefits,and advantages.Addressing these limitations requires the application of objective criteria to assess the effectiveness of each diagnostic method.The diagnostic process is dynamic and requires a consistent algorithm,progressing from clinical subjective data,such as patient history(anamnesis),and objective findings to diagnostics ex juvantibus.Caution must be exercised when interpreting diagnostic results,and there is an urgent need for better diagnostic tests.In the absence of such tests,preliminary criteria and a diagnosis ex juvantibus must be relied upon.Diagnostic imaging methods are critical stages in the diagnostic workflow,with sensitivity,specificity,and accuracy serving as the primary criteria for evaluating clinical,laboratory,and instrumental symptoms.A comprehensive evaluation of all available diagnostic data guarantees an accurate diagnosis.The“gold standard”for diagnosis is typically established through either the results of a pathological autopsy or a lifetime diagnosis resulting from a thorough examination using all diagnostic methods.
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金the Key Project of the National Research Program of China(2020YFB0606201)。
文摘A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.
文摘Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three different types of impurities are generally available in the pharmaceutical’s product specification: organic impurities, inorganic impurities, and residual solvents. Residual solvents are organic volatile chemicals used or generated during the manufacturing of drug substances or drug products. Purpose: The aim of this study is to develop a cost-effective gas chromatographic method for the identification and quantification of some commonly used solvents—methanol, acetone, isopropyl alcohol (IPA), methylene chloride, ethyl acetate, tetrahydrofuran (THF), benzene, toluene, and pyridine—in pharmaceutical product manufacturing. This method will be able to identify and quantify the multiple solvents within a single gas chromatographic procedure. Method: A gas chromatography (GC) equipped with a headspace sampler and a flame ionization detector, and a column DB 624, 30-meter-long × 0.32-millimeter internal diameter, 1,8 μm-thick, Brand-Agilent was used to develop this method. The initial GC oven temperature was 40°C and held for 5 minutes. It was then increase to 80˚C at a rate of 2˚C per minute, followed by a further increase to 225˚C at a rate of 30˚C per minute, with a final hold at 225˚C for 10 minutes. Nitrogen was used as a carrier gas at a flow rate of 1.20 mL per minute. Dimethyl sulfoxide (DMSO) was selected as sample solvent. Results: The developed method is precise and specific. The percent RSD for the areas of six replicate injections of this gas chromatographic method was within 10.0 and the recovery result found within 80.0% to 120.0%.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR202011030013)the National Natural Science Foundation of China(No.41976205)+1 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020002)the China Geological Survey Program(No.DD20221704).
文摘It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金supported by ONR UMass Dartmouth Marine and UnderSea Technology(MUST)grant N00014-20-1-2849 under the project S31320000049160by DOE grant DE-SC0023164 sub-award RC114586-UMD+2 种基金by AFOSR grants FA9550-18-1-0383 and FA9550-23-1-0037supported by Michigan State University,by AFOSR grants FA9550-19-1-0281 and FA9550-18-1-0383by DOE grant DE-SC0023164.
文摘Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime.
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金the National Natural Science Foundation of China for financial support to this work under Grant NSFC No.12072064.
文摘The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
基金supported by the National Natural Science Foundation of China (Nos.52274048 and 52374017)Beijing Natural Science Foundation (No.3222037)the CNPC 14th five-year perspective fundamental research project (No.2021DJ2104)。
文摘The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.