Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-...Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.展开更多
Aim To develop a hydrodynamic model on the void fraction in liquid slugs for gas liquid slug flow in vertical tubes. Methods Developing the model by considering the gas exchange between the Taylor bubble and the fo...Aim To develop a hydrodynamic model on the void fraction in liquid slugs for gas liquid slug flow in vertical tubes. Methods Developing the model by considering the gas exchange between the Taylor bubble and the following liquid slug. Results Some experimental data are obtained to check the model. In comparison with previous published results, the predictions from this model are better and in good agreement with the experimental data. The error is within ±20%. Conclusion The proposed model can correctly predict the void fraction in liquid slugs for gas liquid two phase slug flow in vertical tubes.展开更多
Severe slugging can occur in a pipeline-riser system at relatively low liquid and gas flow rates during gas-oil transportation, possibly causing unexpected damage to the production facilities. Experiments with air and...Severe slugging can occur in a pipeline-riser system at relatively low liquid and gas flow rates during gas-oil transportation, possibly causing unexpected damage to the production facilities. Experiments with air and water are conducted in a horizontal and downward inclined pipeline followed by a catenary riser in order to investigate the mechanism and characteristics of severe slugging. A theoretical model is introduced to compare with the experiments. The results show that the formation mechanism of severe slugging in a catenary riser is different from that in a vertical riser due to the riser geometry and five flow patterns are obtained and analyzed. A gas-liquid mixture slug stage is observed at the beginning of one cycle of severe slugging, which is seldom noticed in previous studies. Based on both experiments and computations, the time period and variation of pressure amplitude of severe slugging are found closely related to the superficial gas velocity, implying that the gas velocity significantly influences the flow patterns in our experiments. Moreover, good agreements between the experimental data and the numerical results are shown in the stability curve and flow regime map, which can be a possible reference for design in an offshore oil-production system.展开更多
基金Supported by the National Natural Science Foundation of China(No.51478297)Program of Introducing Talents of Discipline(No.B13011)
文摘Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.
文摘Aim To develop a hydrodynamic model on the void fraction in liquid slugs for gas liquid slug flow in vertical tubes. Methods Developing the model by considering the gas exchange between the Taylor bubble and the following liquid slug. Results Some experimental data are obtained to check the model. In comparison with previous published results, the predictions from this model are better and in good agreement with the experimental data. The error is within ±20%. Conclusion The proposed model can correctly predict the void fraction in liquid slugs for gas liquid two phase slug flow in vertical tubes.
基金financially supported by the National Natural Science Foundation of China(Grant No.11272211)the National Program on Key Basic Research Project of China(973 Program,Grant No.2015CB251203)
文摘Severe slugging can occur in a pipeline-riser system at relatively low liquid and gas flow rates during gas-oil transportation, possibly causing unexpected damage to the production facilities. Experiments with air and water are conducted in a horizontal and downward inclined pipeline followed by a catenary riser in order to investigate the mechanism and characteristics of severe slugging. A theoretical model is introduced to compare with the experiments. The results show that the formation mechanism of severe slugging in a catenary riser is different from that in a vertical riser due to the riser geometry and five flow patterns are obtained and analyzed. A gas-liquid mixture slug stage is observed at the beginning of one cycle of severe slugging, which is seldom noticed in previous studies. Based on both experiments and computations, the time period and variation of pressure amplitude of severe slugging are found closely related to the superficial gas velocity, implying that the gas velocity significantly influences the flow patterns in our experiments. Moreover, good agreements between the experimental data and the numerical results are shown in the stability curve and flow regime map, which can be a possible reference for design in an offshore oil-production system.