Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental fl...Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental flow velocity was investigated. The laws of deformed metal flow on profile extrusion process were obtained. The smaller the local extrusion ratio, the faster the metal flow velocity; the smaller the area of die bearing, the faster the metal flow velocity; the smaller the distance of position of local die orifice(the closer the distance of position of local die orifice from extrusion cylindrical axis), the faster the metal flow velocity. The effect of main parameters of die structure on metal flow velocity was integrated and the mathematical model of determination of die bearing length in design of aluminum profile extrusion die was proposed. The calculated results with proposed model were well compared with the experimental results. The proposed model can be applied to determine die bearing length in design of aluminum profile extrusion die.展开更多
Forming zone length (FZL) is a key parameter of the lead-clad glass fiber extrusion dies, and an unsuitable FZL will lead to breakage of the glass fiber and/or unacceptable geometric and metallographic qualities of th...Forming zone length (FZL) is a key parameter of the lead-clad glass fiber extrusion dies, and an unsuitable FZL will lead to breakage of the glass fiber and/or unacceptable geometric and metallographic qualities of the product. The optimal FZL was determined theoretically based on a mathematical model established by upper bound method, and accepted Pb-GF wire was actually obtained experimentally by symmetric side-feed extrusion at a much lower temperature than that published before. The wire has features of fine grains, uniform diameter, good coaxiality and satisfied mechanical property. The results and conclusions obtained in the research can be used to design the forming tools for lead-clad glass fiber extrusion and have significance to further research on the extrusion of other complex wires of metal-clad brittle core.展开更多
文摘Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental flow velocity was investigated. The laws of deformed metal flow on profile extrusion process were obtained. The smaller the local extrusion ratio, the faster the metal flow velocity; the smaller the area of die bearing, the faster the metal flow velocity; the smaller the distance of position of local die orifice(the closer the distance of position of local die orifice from extrusion cylindrical axis), the faster the metal flow velocity. The effect of main parameters of die structure on metal flow velocity was integrated and the mathematical model of determination of die bearing length in design of aluminum profile extrusion die was proposed. The calculated results with proposed model were well compared with the experimental results. The proposed model can be applied to determine die bearing length in design of aluminum profile extrusion die.
文摘Forming zone length (FZL) is a key parameter of the lead-clad glass fiber extrusion dies, and an unsuitable FZL will lead to breakage of the glass fiber and/or unacceptable geometric and metallographic qualities of the product. The optimal FZL was determined theoretically based on a mathematical model established by upper bound method, and accepted Pb-GF wire was actually obtained experimentally by symmetric side-feed extrusion at a much lower temperature than that published before. The wire has features of fine grains, uniform diameter, good coaxiality and satisfied mechanical property. The results and conclusions obtained in the research can be used to design the forming tools for lead-clad glass fiber extrusion and have significance to further research on the extrusion of other complex wires of metal-clad brittle core.