The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers an...The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers and boilers with manual load-ing.The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions,as well as the mass of ash and slag waste.The main pollutants from coal combustion are calculated:particulate matter,benz(a)pyrene,nitrogen oxides,sulfur dioxide,carbon monoxide.Of the greenhouse gases carbon dioxide is calculated.As a result of conducted research it is shown that the simplest preliminary preparation(size-graded)of coal significantly improves combustion efficiency and environmental performance:emissions are reduced by 13%for hard coal and up to 20%for brown coal.The introduction of automated boil-ers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2-3 times.The best environmental indicators correspond to heat-treated lignite,which is characterized by the absence of sulfur dioxide emissions.展开更多
Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, i...Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, it is held that, the notable energy imbalance of furnace exit, ever existing in the tangential firing boilers has been solved, with comparatively lower NOX emission concentration of gained. The higher NOX emission concentration and furnace slagging etc. problems existing in wall firing boilers are notable. The comprehensive analysis shows that, it is appropriate to choose lower furnace volume heat release rate and higher flame height in the type selection design of boilers, and sufficient margin should be kept in the selection of coal pulverizing mills.展开更多
Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, p...Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction of future coal-fired boilers. A new nickel-based tube alloy, INCONEL^R alloy 740, is described aiming at meeting this challenge. Emphasis will be on describing the alloy' s mechanical properties, coal-ash and steam corrosion resistance. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology em- ployed to arrive at the current chemical composition.展开更多
Natural gas-fired electricity(NGFE) is expected to play a more important role in the future due to its characteristics of low pollution, high efficiency and flexibility. However, its development in China is impeded by...Natural gas-fired electricity(NGFE) is expected to play a more important role in the future due to its characteristics of low pollution, high efficiency and flexibility. However, its development in China is impeded by its high regulation price compared with coal power. Market reform is therefore of vital importance to promote the penetration of NGFE. The objective of this study is to analyze the impacts of market reform and the renewable electricity(RE) subsidy policy on the promotion of NGFE and RE. A dynamic game-theoretic model is developed to analyze the interaction among the NG supplier, the power sector and the power grid. Three scenarios are proposed with different policies, including a fixed regulation price of NG and electricity, real-time pricing(RTP) of NG and electricity, and subsidy targeted at RE. The results show that:(1) market reform can sharply decrease the NG price and consequently promote the development of NGFE and RE;(2) subsidy targeted at RE not only promotes the penetration of NGFE and RE, but also increases the utilization ratio of renewables significantly;(3) market reform and the subsidy also enhance consumers’ welfare by reducing their power consumption expenditure.展开更多
As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas i...As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.展开更多
To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the ...To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models.展开更多
Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Op...Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.展开更多
The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation met...The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
In order to develop large CFB boilers with independent intellectual property, Xi'an Thermal Power Research Institute (TPRI) established a laboratory with complete functions for the technical development of CFB boi...In order to develop large CFB boilers with independent intellectual property, Xi'an Thermal Power Research Institute (TPRI) established a laboratory with complete functions for the technical development of CFB boilers. This laboratory consists of a 1-MW and a 4-MW CFB combustion test facilities and a laboratory for limestone desulphurization performance evaluation. It carried out tests on CFB combustion and desulphurization for Chinese typical coals and limestone and research on heat-transfer characteristics and key parts, and developed the first home-made 100-MW CFB boiler. Based on the experience of R&D, the laboratory further researched key techniques for enlarging capacity systematically, and cooperating with Harbin Boiler Co. (HBC), developed the first domestic 210-MW CFB boiler with independent intellectual property and put it into engineering demonstration, laying a solid foundation for the development of CFB boilers of even larger capacity.展开更多
This article introduces the present status anddevelopment of 600 MW class boilers in China. The statisticaldata indicate that most 600 MW generating units experiencedrelatively length" growing up" period. In...This article introduces the present status anddevelopment of 600 MW class boilers in China. The statisticaldata indicate that most 600 MW generating units experiencedrelatively length" growing up" period. In this period, unitscould not operate stably , their unplanned outage times weremany and durations long, and availabilities low. On the basis oftesting and research and the summing-up of practice, it wasindicated slagging in the furnace, deviation of tine gas energy atthe exit of furnace, and overheating bursting of superheater andreheater etc, endangering the safety and economics ofoperation,main problems could be completely alleviated oravoided through design and type selection of boiler furnace andburners, coal characteristics and coal handling management,and optimization management of operation conditions etc.展开更多
The sugar cane containing minimum 30% fiber was referred as bagasse and used the generation of power required for the operation of sugar mill. The bagasse is fired in the boiler for producing steam at high pressure, w...The sugar cane containing minimum 30% fiber was referred as bagasse and used the generation of power required for the operation of sugar mill. The bagasse is fired in the boiler for producing steam at high pressure, which is extracted through various single high capacity turbines and used in the process. The installation of high pressure boilers and high pressure turbo-generators has provision for the operation of co-generation plant during the off-season also that enhances the power generation from 9MW to 23MW. The annual monetary benefits achieved are Rs. 204.13 million and this was based on cost of power sold to the grid @ Rs 2.548 per unit, sugar season of 219 days and off season of 52 days. This required an investment of Rs 820.6 million. The investment had an attractive simple payback period of 48 months.展开更多
The aim of this paper is to present the concept of a simple and cheap upgrade for electric water boilers, allowing them to provide power quality services to the distribution grid. The upgrade requires only minimum add...The aim of this paper is to present the concept of a simple and cheap upgrade for electric water boilers, allowing them to provide power quality services to the distribution grid. The upgrade requires only minimum additional hardware and it is easily installable. “Smart Boilers”, as the upgraded boilers are named, perform precise active and reactive power control, but most significantly mitigate line current harmonics. Αctive and reactive power control is implemented by appropriate regulation of the modulation sinewave amplitude and phase, respectively. This type of control is easily customizable in order to accommodate a variety of power quality targets, depending on the required level of services and available grid monitoring equipment. The method used for line current harmonic compensation is based on the injection of mirror harmonics created at the modulation stage of the converter. It is indifferent of harmonic source: it is equally successful at mitigating harmonics caused by the power electronic converter of the Smart Boiler, other sources of current harmonics or loads. The achieved grid services are clearly beyond the “on/off” operation of electric boilers, currently implemented by Demand Side Management (DSM) in order to shift load away from peak hours. It has been demonstrated through simulations, that Smart Boilers can assist voltage regulation at terminal buses, compensate reactive power and suppress harmonic currents at lines.展开更多
This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers in Suizhong Power Plant, such as burner bumout, water-wall leakage, slag screenⅠexplosion, crack happened on the desuperheater ...This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers in Suizhong Power Plant, such as burner bumout, water-wall leakage, slag screenⅠexplosion, crack happened on the desuperheater outlet of reheater and welding defect of economizer; tells the process of renovating these units by modifying the original design and adjusting the operation parameters. After several years' effort, all the problems have been well solved. The experience may be useful for other imported units in China.展开更多
The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect ...The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect of carbon price floor on levelised cost of gas-fired generation technology through the levelised cost of electricity (LCOE) ap-proach with the estimation of carbon price floor. Finally, the comparison of levelised cost of electricity for all generation technology in the UK will be shown and discussed.展开更多
Analysis was performed on the boiler for solid fuels in a corresponding real-thermal load. The tests were conducted with the use of a low-temperature top-loading KWSM water boiler. For control of the burning process, ...Analysis was performed on the boiler for solid fuels in a corresponding real-thermal load. The tests were conducted with the use of a low-temperature top-loading KWSM water boiler. For control of the burning process, three control algorithms were used as implemented in microprocessor temperature controls. The analysis aimed at determination of influence of the control algorithm upon quality of the buming process in conditions of actual demand for thermal energy. The detailed analysis of operating parameters in relation to the variable thermal load of the boiler provided necessary information and made it possible to state that control algorithms do influence quality of the controlled process. Particular attention was paid to a situation, in which demand for thermal energy is decreased.展开更多
1.IntroductionCoal is listed in China’s energy policy as the predominant fuelto be used for thermal power generation.It includes nearly the wholespectrum of coals that China has,ranging from anthracite to browncoal.T...1.IntroductionCoal is listed in China’s energy policy as the predominant fuelto be used for thermal power generation.It includes nearly the wholespectrum of coals that China has,ranging from anthracite to browncoal.This poses a situation to China’s utility boiler manufacturers thattheir products have to cope with all kinds of coal available.China is now producing a full range of utility boilers with ca-pacities from 35 t/h through 2000 t/h.They have successfully burnedanthracities with volatile matter greater than 7% and low grade coalswith high moisture and high ash contents.They burn bituminouscoals and lignites with satisfactory efficacy.展开更多
In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign meth...In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign methods for choosing the pulverizing system for lignite boilers,it is suggested that the particle size of coal,the drying time,the drying temperature and the humidity should be taken into account when measuring the free moisture of lignite,and the total moisture could also be the principle for type selection of pulverizer for lignite boilers.Furthermore,the determination of pulverized-coal moisture has great influence on the running of pulverizing systems.The actual moisture of certain pulverized coals is compared with that calculated with different methods and a feasible method for determining the moisture of the pulverized coal is suggested.展开更多
基金The research was carried out under State Assignment Projects(FWEU-2021-0004,FWEU-2021-0005)of the Fundamental Research Program of Russian Federation 2021-2030.
文摘The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers and boilers with manual load-ing.The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions,as well as the mass of ash and slag waste.The main pollutants from coal combustion are calculated:particulate matter,benz(a)pyrene,nitrogen oxides,sulfur dioxide,carbon monoxide.Of the greenhouse gases carbon dioxide is calculated.As a result of conducted research it is shown that the simplest preliminary preparation(size-graded)of coal significantly improves combustion efficiency and environmental performance:emissions are reduced by 13%for hard coal and up to 20%for brown coal.The introduction of automated boil-ers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2-3 times.The best environmental indicators correspond to heat-treated lignite,which is characterized by the absence of sulfur dioxide emissions.
文摘Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, it is held that, the notable energy imbalance of furnace exit, ever existing in the tangential firing boilers has been solved, with comparatively lower NOX emission concentration of gained. The higher NOX emission concentration and furnace slagging etc. problems existing in wall firing boilers are notable. The comprehensive analysis shows that, it is appropriate to choose lower furnace volume heat release rate and higher flame height in the type selection design of boilers, and sufficient margin should be kept in the selection of coal pulverizing mills.
文摘Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction of future coal-fired boilers. A new nickel-based tube alloy, INCONEL^R alloy 740, is described aiming at meeting this challenge. Emphasis will be on describing the alloy' s mechanical properties, coal-ash and steam corrosion resistance. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology em- ployed to arrive at the current chemical composition.
基金supported by Science Foundation of China University of Petroleum,Beijing(Nos.2462013YJRC015,2462014YJRC036)supported by Ministry of Education in China(MOE)Project of Humanities and Social Sciences(Project No.15YJC630195)
文摘Natural gas-fired electricity(NGFE) is expected to play a more important role in the future due to its characteristics of low pollution, high efficiency and flexibility. However, its development in China is impeded by its high regulation price compared with coal power. Market reform is therefore of vital importance to promote the penetration of NGFE. The objective of this study is to analyze the impacts of market reform and the renewable electricity(RE) subsidy policy on the promotion of NGFE and RE. A dynamic game-theoretic model is developed to analyze the interaction among the NG supplier, the power sector and the power grid. Three scenarios are proposed with different policies, including a fixed regulation price of NG and electricity, real-time pricing(RTP) of NG and electricity, and subsidy targeted at RE. The results show that:(1) market reform can sharply decrease the NG price and consequently promote the development of NGFE and RE;(2) subsidy targeted at RE not only promotes the penetration of NGFE and RE, but also increases the utilization ratio of renewables significantly;(3) market reform and the subsidy also enhance consumers’ welfare by reducing their power consumption expenditure.
基金Project(L2012082)supported by the Science and Technology Research Funds of Liaoning Provincial Education Department,China
文摘As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.
基金The National Natural Science Foundation of China(No.71471060)Natural Science Foundation of Hebei Province(No.E2018502111)
文摘To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models.
文摘Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.
文摘The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
文摘In order to develop large CFB boilers with independent intellectual property, Xi'an Thermal Power Research Institute (TPRI) established a laboratory with complete functions for the technical development of CFB boilers. This laboratory consists of a 1-MW and a 4-MW CFB combustion test facilities and a laboratory for limestone desulphurization performance evaluation. It carried out tests on CFB combustion and desulphurization for Chinese typical coals and limestone and research on heat-transfer characteristics and key parts, and developed the first home-made 100-MW CFB boiler. Based on the experience of R&D, the laboratory further researched key techniques for enlarging capacity systematically, and cooperating with Harbin Boiler Co. (HBC), developed the first domestic 210-MW CFB boiler with independent intellectual property and put it into engineering demonstration, laying a solid foundation for the development of CFB boilers of even larger capacity.
文摘This article introduces the present status anddevelopment of 600 MW class boilers in China. The statisticaldata indicate that most 600 MW generating units experiencedrelatively length" growing up" period. In this period, unitscould not operate stably , their unplanned outage times weremany and durations long, and availabilities low. On the basis oftesting and research and the summing-up of practice, it wasindicated slagging in the furnace, deviation of tine gas energy atthe exit of furnace, and overheating bursting of superheater andreheater etc, endangering the safety and economics ofoperation,main problems could be completely alleviated oravoided through design and type selection of boiler furnace andburners, coal characteristics and coal handling management,and optimization management of operation conditions etc.
文摘The sugar cane containing minimum 30% fiber was referred as bagasse and used the generation of power required for the operation of sugar mill. The bagasse is fired in the boiler for producing steam at high pressure, which is extracted through various single high capacity turbines and used in the process. The installation of high pressure boilers and high pressure turbo-generators has provision for the operation of co-generation plant during the off-season also that enhances the power generation from 9MW to 23MW. The annual monetary benefits achieved are Rs. 204.13 million and this was based on cost of power sold to the grid @ Rs 2.548 per unit, sugar season of 219 days and off season of 52 days. This required an investment of Rs 820.6 million. The investment had an attractive simple payback period of 48 months.
文摘The aim of this paper is to present the concept of a simple and cheap upgrade for electric water boilers, allowing them to provide power quality services to the distribution grid. The upgrade requires only minimum additional hardware and it is easily installable. “Smart Boilers”, as the upgraded boilers are named, perform precise active and reactive power control, but most significantly mitigate line current harmonics. Αctive and reactive power control is implemented by appropriate regulation of the modulation sinewave amplitude and phase, respectively. This type of control is easily customizable in order to accommodate a variety of power quality targets, depending on the required level of services and available grid monitoring equipment. The method used for line current harmonic compensation is based on the injection of mirror harmonics created at the modulation stage of the converter. It is indifferent of harmonic source: it is equally successful at mitigating harmonics caused by the power electronic converter of the Smart Boiler, other sources of current harmonics or loads. The achieved grid services are clearly beyond the “on/off” operation of electric boilers, currently implemented by Demand Side Management (DSM) in order to shift load away from peak hours. It has been demonstrated through simulations, that Smart Boilers can assist voltage regulation at terminal buses, compensate reactive power and suppress harmonic currents at lines.
文摘This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers in Suizhong Power Plant, such as burner bumout, water-wall leakage, slag screenⅠexplosion, crack happened on the desuperheater outlet of reheater and welding defect of economizer; tells the process of renovating these units by modifying the original design and adjusting the operation parameters. After several years' effort, all the problems have been well solved. The experience may be useful for other imported units in China.
文摘The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect of carbon price floor on levelised cost of gas-fired generation technology through the levelised cost of electricity (LCOE) ap-proach with the estimation of carbon price floor. Finally, the comparison of levelised cost of electricity for all generation technology in the UK will be shown and discussed.
文摘Analysis was performed on the boiler for solid fuels in a corresponding real-thermal load. The tests were conducted with the use of a low-temperature top-loading KWSM water boiler. For control of the burning process, three control algorithms were used as implemented in microprocessor temperature controls. The analysis aimed at determination of influence of the control algorithm upon quality of the buming process in conditions of actual demand for thermal energy. The detailed analysis of operating parameters in relation to the variable thermal load of the boiler provided necessary information and made it possible to state that control algorithms do influence quality of the controlled process. Particular attention was paid to a situation, in which demand for thermal energy is decreased.
文摘1.IntroductionCoal is listed in China’s energy policy as the predominant fuelto be used for thermal power generation.It includes nearly the wholespectrum of coals that China has,ranging from anthracite to browncoal.This poses a situation to China’s utility boiler manufacturers thattheir products have to cope with all kinds of coal available.China is now producing a full range of utility boilers with ca-pacities from 35 t/h through 2000 t/h.They have successfully burnedanthracities with volatile matter greater than 7% and low grade coalswith high moisture and high ash contents.They burn bituminouscoals and lignites with satisfactory efficacy.
文摘In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign methods for choosing the pulverizing system for lignite boilers,it is suggested that the particle size of coal,the drying time,the drying temperature and the humidity should be taken into account when measuring the free moisture of lignite,and the total moisture could also be the principle for type selection of pulverizer for lignite boilers.Furthermore,the determination of pulverized-coal moisture has great influence on the running of pulverizing systems.The actual moisture of certain pulverized coals is compared with that calculated with different methods and a feasible method for determining the moisture of the pulverized coal is suggested.