The supersonic gas-jet target is an important experimental target for laser wakefield acceleration(LWFA),which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering ...The supersonic gas-jet target is an important experimental target for laser wakefield acceleration(LWFA),which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering gamma rays.According to different electron acceleration requirements,it is necessary to provide specific supersonic gas jets with different density profiles to generate electron beams with high quality and high repetition rates.In this study,the interference images and density profiles of different gas-jet targets were obtained through a modified Nomarski interference diagnosis system.The relationships between the gas density and back pressure,nozzle structure,and other key parameters were studied.Targets with different characteristics are conducive to meeting the various requirements of LWFA.展开更多
The effect of gas flow rate on crystal structures of electrospun and gas-jet/electrospun poly(vinylidene fluoride) (PVDF) fibers was investigated.PVDF fibers were prepared by electrospinning and gas-jet/electrospinnin...The effect of gas flow rate on crystal structures of electrospun and gas-jet/electrospun poly(vinylidene fluoride) (PVDF) fibers was investigated.PVDF fibers were prepared by electrospinning and gas-jet/electrospinning of its N,N-dimethylformamide (DMF) solutions.The morphology of the PVDF fibers was investigated by scanning electron microscopy (SEM).With an increase of the gas flow rate,the average diameters of PVDF fibers were decreased.The crystal structures and thermal properties of the PVDF fibers were...展开更多
基金This work was supported by the Programs for the National Natural Science Foundation of China(Nos.11975316,11775312,12005305 and 61905287)the Continue Basic Scientific Research Project(Nos.WDJC-2019-02 and BJ20002501).
文摘The supersonic gas-jet target is an important experimental target for laser wakefield acceleration(LWFA),which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering gamma rays.According to different electron acceleration requirements,it is necessary to provide specific supersonic gas jets with different density profiles to generate electron beams with high quality and high repetition rates.In this study,the interference images and density profiles of different gas-jet targets were obtained through a modified Nomarski interference diagnosis system.The relationships between the gas density and back pressure,nozzle structure,and other key parameters were studied.Targets with different characteristics are conducive to meeting the various requirements of LWFA.
基金supported by the National Natural Science Foundation of China(No.50473050).
文摘The effect of gas flow rate on crystal structures of electrospun and gas-jet/electrospun poly(vinylidene fluoride) (PVDF) fibers was investigated.PVDF fibers were prepared by electrospinning and gas-jet/electrospinning of its N,N-dimethylformamide (DMF) solutions.The morphology of the PVDF fibers was investigated by scanning electron microscopy (SEM).With an increase of the gas flow rate,the average diameters of PVDF fibers were decreased.The crystal structures and thermal properties of the PVDF fibers were...