The organic Rankine cycle (ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing, easily-invited cavitations, low e...The organic Rankine cycle (ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing, easily-invited cavitations, low efficiency and high cost. Gas-liquid two-phase injector is a device without moving parts, in which steam is used to drive cold liquid from a pressure lower than the primary steam to a pressure higher than the primary steam. In this paper, the mechanical circulation pump was replaced with a gas-liquid injector. The effect of the evaporate temperature for the system was studied with the organic fluid R123. While this novel ORC can not only improves the energy utilization, but also be suitable for some occasions without power.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi...In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.展开更多
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro...Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel...Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.展开更多
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the...Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.展开更多
An air-lift has been more recently applied in the dredging, deep-seated beach placer mining and underground mining engineering. However, the influence and mechanism of various parameters on the air-lift performance ar...An air-lift has been more recently applied in the dredging, deep-seated beach placer mining and underground mining engineering. However, the influence and mechanism of various parameters on the air-lift performance are not quite clear, especially the influence of flow pattern on lifting efficiency. Focusing on the problems mentioned above, the key part of the air-lift (namely, the air injector) was proposed aimed to reduce friction loss in the inner pipe according to improving flow field performance, thus increase the lifting efficiency. The study of relative factors of the performance of an air-lift is performed and the river sand is used as simulation of underground ore bed. The total lifting height of the experimental system is 3 m, the water flux, mass flow of solid particles, concentration of particles and lifting efficiency are measured under the same submergence ratios by changing the air injector, which is divided into nine specifications of air injection in this research. The experimental results indicate that the optimal air flow rate corresponding to excellent performance of the air-lift can be obtained in the range of 35-40 m3/h. The air injection method has a great effect on the performance of the air-lift, the air injector with three nozzles is better than that in the case of one or two nozzles. Further more, the air injection angle and arrangement of air injection pipes also have great effect on the performance of an air-lift. The proposed research results have guiding significance for engineering application.展开更多
The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the sti...The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks.展开更多
Gas-liquid microreaction technology has shown great potential in a variety of industrial relevant mass transfer operations and reactions. This paper outlines the current research status of this technology with emphasi...Gas-liquid microreaction technology has shown great potential in a variety of industrial relevant mass transfer operations and reactions. This paper outlines the current research status of this technology with emphasis on reactor design, hydrodynamics and mass transfer phenomena as well as reaction applications. The future challenges of this important technology are also summarized.展开更多
The available SMD(Sauter mean diameter) correlations on pressure-swirl injectors predict droplet sizing very different from each other, especially for heavy fuels. Also there was a lack in the literature for comparing...The available SMD(Sauter mean diameter) correlations on pressure-swirl injectors predict droplet sizing very different from each other, especially for heavy fuels. Also there was a lack in the literature for comparing available correlations. So an experimental study was conducted on a heavy fuel oil(HFO) spray, Mazut 380. A pressure swirl injector was designed and fabricated. The experiments for Mazut at 40℃ and 80℃ were compared with the results for water, including spray half cone angle, breakup length and mean droplet diameter,at different injection pressures. Lower spray angle, higher breakup length and larger droplets were observed for lower injection pressures and higher liquid viscosity. SMD was about 75 μm for water and about 87 μm for Mazut at 80℃. The results for droplet mean diameter were also compared with correlations from previous studies on pressure swirl atomizers. The SMD results show that for water spray, LISA method was in good agreement,also Babu and Ballester correlations were successful when high viscosity fluid was injected.展开更多
The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-pha...The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%.展开更多
Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by et...Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by ethanol. The influences of the Reynolds number on the measurable interface concentration and on the film thickness were discussed. The results show that CO2 concentration decreases exponentially along the mass transfer direction,and the concentration gradient increases as Reynolds number of either liquid or gas increases. CO2 concentrations fluctuate slightly along the direction of flow; on the whole, there is an increase in CO2 concentration. The investigation also demonstrated that film thickness decreases with the increase of Reynolds number of either of the two phases. Sherwood number representing the mass transfer coefficient was finally correlated as a function of the hydrodynamic parameters and the physical properties.展开更多
The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved ...The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved riser model and the response displacements of the riser were simultaneously recorded by high speed cameras. The gas superficial velocity ranges from 0.1 m/s to 0.6 m/s while the liquid superficial velocity from 0.06 m/s to 0.3 m/s.Severe slugging type 3, unstable oscillation flow and relatively stable slug flow were observed in the considered flow rates. Severe slugging type 3 characterized by premature gas penetration occurs at relatively low flow rates. Both the cycle time and slug length become shorter as the gas flow rate increases. The pressure at the riser base undergoes a longer period and larger amplitude of fluctuation as compared with the other two flow regimes. Additionally, severe slugging leads to the most vigorous in-plane vibration. However, the responses in the vertical and horizontal directions are not synchronized. The vertical vibration is dominated by the second mode while the horizontal vibration is dominated by the first mode. Similar to the vortex-induced vibration, three branches are identified as initial branch, build-up branch and descending branch for the response versus the mixture velocity of gas-liquid flow.展开更多
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz...The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss.展开更多
A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of gr...A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure.展开更多
A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in...A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation.展开更多
文摘The organic Rankine cycle (ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing, easily-invited cavitations, low efficiency and high cost. Gas-liquid two-phase injector is a device without moving parts, in which steam is used to drive cold liquid from a pressure lower than the primary steam to a pressure higher than the primary steam. In this paper, the mechanical circulation pump was replaced with a gas-liquid injector. The effect of the evaporate temperature for the system was studied with the organic fluid R123. While this novel ORC can not only improves the energy utilization, but also be suitable for some occasions without power.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
基金supported by National Natural Science Foundations of China (Nos. 52307163 and 12305279)the China Postdoctoral Science Foundation (Nos. 2023M740498 and 2022M710590)Postdoctoral Fellowship Program of CPSF (No. GZC20230348)。
文摘In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.
基金This work was supported by National Natural Science Foundation of China(No.12222513).
文摘Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金the National Natural Science Foundation of China(No.62173049)the Open Fund of the Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金supported by National Natural Science Foundation of China(Nos.52277151 and 51907088)Innovative Talents Team Project of‘Six Talent Peaks’of Jiangsu Province(No.TD-JNHB-006).
文摘Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.
基金supported by Ministry of Science and Technology of China (Grant No. 2008DFA70300)
文摘An air-lift has been more recently applied in the dredging, deep-seated beach placer mining and underground mining engineering. However, the influence and mechanism of various parameters on the air-lift performance are not quite clear, especially the influence of flow pattern on lifting efficiency. Focusing on the problems mentioned above, the key part of the air-lift (namely, the air injector) was proposed aimed to reduce friction loss in the inner pipe according to improving flow field performance, thus increase the lifting efficiency. The study of relative factors of the performance of an air-lift is performed and the river sand is used as simulation of underground ore bed. The total lifting height of the experimental system is 3 m, the water flux, mass flow of solid particles, concentration of particles and lifting efficiency are measured under the same submergence ratios by changing the air injector, which is divided into nine specifications of air injection in this research. The experimental results indicate that the optimal air flow rate corresponding to excellent performance of the air-lift can be obtained in the range of 35-40 m3/h. The air injection method has a great effect on the performance of the air-lift, the air injector with three nozzles is better than that in the case of one or two nozzles. Further more, the air injection angle and arrangement of air injection pipes also have great effect on the performance of an air-lift. The proposed research results have guiding significance for engineering application.
基金the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks.
基金Supported by the National Natural Science Foundation of China (20490208, 20676129), the National High Technology Research and Development Program of China (2006AA05Z233, 2007AA030206).
文摘Gas-liquid microreaction technology has shown great potential in a variety of industrial relevant mass transfer operations and reactions. This paper outlines the current research status of this technology with emphasis on reactor design, hydrodynamics and mass transfer phenomena as well as reaction applications. The future challenges of this important technology are also summarized.
文摘The available SMD(Sauter mean diameter) correlations on pressure-swirl injectors predict droplet sizing very different from each other, especially for heavy fuels. Also there was a lack in the literature for comparing available correlations. So an experimental study was conducted on a heavy fuel oil(HFO) spray, Mazut 380. A pressure swirl injector was designed and fabricated. The experiments for Mazut at 40℃ and 80℃ were compared with the results for water, including spray half cone angle, breakup length and mean droplet diameter,at different injection pressures. Lower spray angle, higher breakup length and larger droplets were observed for lower injection pressures and higher liquid viscosity. SMD was about 75 μm for water and about 87 μm for Mazut at 80℃. The results for droplet mean diameter were also compared with correlations from previous studies on pressure swirl atomizers. The SMD results show that for water spray, LISA method was in good agreement,also Babu and Ballester correlations were successful when high viscosity fluid was injected.
基金Supported by the National Natural Science Foundation of China (50576088, 20706049) and Zhejiang Provincial Key Science Foundation (2006C21064, 2007C21067).
文摘The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%.
基金Supported by the National Natural Science Foundation of China (No.20476072).
文摘Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by ethanol. The influences of the Reynolds number on the measurable interface concentration and on the film thickness were discussed. The results show that CO2 concentration decreases exponentially along the mass transfer direction,and the concentration gradient increases as Reynolds number of either liquid or gas increases. CO2 concentrations fluctuate slightly along the direction of flow; on the whole, there is an increase in CO2 concentration. The investigation also demonstrated that film thickness decreases with the increase of Reynolds number of either of the two phases. Sherwood number representing the mass transfer coefficient was finally correlated as a function of the hydrodynamic parameters and the physical properties.
基金financially supported by the National Natural Science Foundation of China(Grant No.11502220)the Youth Science&Technology Foundation of Sichuan Province(Grant No.2017JQ0055)the Youth Scientific and Technological Innovation Team of the Safety of Deep-Water Pipe Strings of Southwest Petroleum University(Grant No.2017CXTD06)
文摘The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved riser model and the response displacements of the riser were simultaneously recorded by high speed cameras. The gas superficial velocity ranges from 0.1 m/s to 0.6 m/s while the liquid superficial velocity from 0.06 m/s to 0.3 m/s.Severe slugging type 3, unstable oscillation flow and relatively stable slug flow were observed in the considered flow rates. Severe slugging type 3 characterized by premature gas penetration occurs at relatively low flow rates. Both the cycle time and slug length become shorter as the gas flow rate increases. The pressure at the riser base undergoes a longer period and larger amplitude of fluctuation as compared with the other two flow regimes. Additionally, severe slugging leads to the most vigorous in-plane vibration. However, the responses in the vertical and horizontal directions are not synchronized. The vertical vibration is dominated by the second mode while the horizontal vibration is dominated by the first mode. Similar to the vortex-induced vibration, three branches are identified as initial branch, build-up branch and descending branch for the response versus the mixture velocity of gas-liquid flow.
基金supported by National Natural Science Foundation of China(No.61572084)the National Key Research and Development Program of China(2017ZX05030-005,2019D-4413).
文摘The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss.
基金Supported by the National High Technology Research and Development Program of China (2006AA05A103), the National Natural Science Foundation of China (50706007), Foundation of Graduate Creative Program of Jiangsu (CX08B-060Z), and the Foundation for Excellent Ph.D. Thesis of Southeast University. ACKNOWLEDGEMENTS The authors also expressed sincere gratitude to Professors M. Horio, B. Leckner, A. Kane and E.J. Anthony for constructive advice during their visiting period in Southeast University, which contributed to our research.
文摘A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure.
基金Supported by National High-tech Research and Development Foundation of China (No.2001AA413210).
文摘A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation.