期刊文献+
共找到6,252篇文章
< 1 2 250 >
每页显示 20 50 100
Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature and High Pressure 被引量:6
1
作者 杨卫国 王金福 金涌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期253-257,共5页
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring... The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors. 展开更多
关键词 gas-liquid mass transfer high temperature high pressure slurry bubble column
下载PDF
Connection Between Liquid Distribution and Gas-Liquid Mass Transfer in Monolithic Bed 被引量:3
2
作者 许闽 刘辉 +2 位作者 李成岳 周媛 季生福 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第5期738-746,共9页
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedo... With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%. 展开更多
关键词 MONOLITHS flow distribution gas-liquid mass transfer Taylor flow SINGLE-CHANNEL
下载PDF
Gas-liquid mass transfer of carbon dioxide capture by magnesium hydroxide slurry in a bubble column reactor 被引量:6
3
作者 XIE Peng-fei LI Li-qing +1 位作者 HE Zhi-cheng SU Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1592-1606,共15页
Magnesium hydroxide(Mg(OH)2)has been considered as a potential solvent for CO2 removal of coal-fired power plant and biomass gas.The chemistry action and mass to transfer mechanism of CO2-H2O-Mg(OH)2 system in a slurr... Magnesium hydroxide(Mg(OH)2)has been considered as a potential solvent for CO2 removal of coal-fired power plant and biomass gas.The chemistry action and mass to transfer mechanism of CO2-H2O-Mg(OH)2 system in a slurry bubble column reactor was described,and a reliable computational model was developed.The overall mass transfer coefficient and surface area per unit volume were obtained using experimental approach and simulation with software assistance.The results show that the mass transfer process of CO2 absorbed by Mg(OH)2 slurry is mainly liquid-controlled,and slurry concentration and temperature are main contributory factors of volumetric mass transfer coefficient and liquid side mass transfer coefficient.High concentration of CO2 has an adverse effect on its absorption because it leads to the fast deposition of MgCO3·3H2O crystals on the surfaces of unreacted Mg(OH)2 particles,reducing the utilization ratio of magnesium hydroxide.Meanwhile,high CO3^2– ion concentration limits the dissolution of MgCO3 to absorb CO2 continually.Concentration of 0.05 mol/L Mg(OH)2,15%vol CO2 gas and operation temperature at 35℃are recommended for this CO2 capture system. 展开更多
关键词 mass transfer CO2 capture magnesium hydroxide bubble column
下载PDF
HYSTERESIS OF GAS-LIQUID MASS TRANSFER IN A TRICKLE BED REACTOR
4
作者 王蓉 毛在砂 陈家镛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1994年第4期53-57,共5页
1 INTRODUCTIONTrickle bed reactors are widely used in the process industry,particularly in petroleumhydroprocessing operations,and have been extensively studied by chemical engineers.In atrickle bed reactor,the gas an... 1 INTRODUCTIONTrickle bed reactors are widely used in the process industry,particularly in petroleumhydroprocessing operations,and have been extensively studied by chemical engineers.In atrickle bed reactor,the gas and liquid flow cocurrently down through the packed bedand undergo chemical reactions.However,there exist multiple hydrodynamic stateswhich correspond to either uniform or,in most cases,nonuniform radial distributionof the gas and liquid flows in the packed section.Moreover,the hydrodynamic state 展开更多
关键词 trickle BED HYSTERESIS gas-liquid mass transfer chemical REACTOR
下载PDF
CORRELATION BETWEEN HYSTERESIS OF GAS-LIQUID MASS TRANSFER AND LIQUID DISTRIBUTION IN A TRICKLE BED
5
作者 王蓉 栾美琅 +1 位作者 毛在砂 陈家镛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第2期43-47,共5页
The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental res... The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental results indicate that the hysteresis of gas-liquid mass transfer originatesfrom the nonuniformity of the hydrodynamic state of gas-liquid flow and the radial maldistributionof local k<sub>gia</sub> corresponds very well to the radial maldistribution of liquid flow in the bed.The localliquid flow rate is also found to be nonuniform in the azimuthal direction.In view of maldistributedliquid flow even in the pulsing flow regime,the conventional plug flow model seems oversimplifiedfor describing the behavior of a trickle bed. 展开更多
关键词 TRICKLE-BED REACTOR RADIAL liquid distribution gas-liquid mass transfer HYSTERESIS
下载PDF
Studies on the Influence of Third Component on Gas-Liquid Mass Transfer
6
作者 马友光 刘永莉 +2 位作者 成弘 余国琮 周国文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第2期100-102,共3页
The influence of the third component on gas-liquid mass transfer was studied by use of laser holographic interferometry. Four surfactants were added respectively and experimental results show that the microamount of s... The influence of the third component on gas-liquid mass transfer was studied by use of laser holographic interferometry. Four surfactants were added respectively and experimental results show that the microamount of surfactants can change obviously the concentration near the interface on bubble mass transfer process, which indicated that the third component has a significant effect on the bubble mass transfer process. 展开更多
关键词 micro laser holographic interference mass transfer concentration field
下载PDF
Effect of surfactant frequently used in soil flushing on oxygen mass transfer in micro-nano-bubble aeration system
7
作者 Mei Bai Zhibin Liu +3 位作者 Zhu Liu Chenfei He Zhanhuang Fan Miaoxin Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期174-181,共8页
In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this s... In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy. 展开更多
关键词 Soil flushing Micro-nano-bubble aeration Bio-surfactant mass transfer coefficient
下载PDF
PVDF-assisted pyrolysis strategy for corrugated plate oxygen electrocatalysis nanoreactor:Simultaneously realizing efficient active sites and rapid mass transfer
8
作者 Chenxi Xu Liang Chen +6 位作者 Haihui Zhou Shifeng Qin Zhaohui Hou Yangyang Chen Jiale Sun Junwei Xu Zhongyuan Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期612-621,I0013,共11页
Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea... Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts. 展开更多
关键词 Active sites mass transfer Corrugated plate Oxygen electrocatalyst Zn-air batteries
下载PDF
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
9
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR Microchannels mass transfer WETTABILITY Taylor flow gas-liquid two-phase
下载PDF
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
10
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Effect of bipolar-plates design on corrosion,mass and heat transfer in proton-exchange membrane fuel cells and water electrolyzers:A review
11
作者 Jiuhong Zhang Xiejing Luo +2 位作者 Yingyu Ding Luqi Chang Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1599-1616,共18页
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar... Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science. 展开更多
关键词 bipolar-plates flow design mass and heat transfer CORROSION water electrolyzers fuel cells
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
12
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT Heat and mass transfer
下载PDF
Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc
13
作者 Min ZHU Yuchen PING +2 位作者 Yinghao ZHANG Chaohai ZHANG Shuqun WU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期88-96,共9页
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the... In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder. 展开更多
关键词 gliding arc discharge atmospheric pressure plasma multiphase discharge mass transfer
下载PDF
Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor
14
作者 Chuanjun Di Jipeng Dong +3 位作者 Fei Gao Guanghui Chen Pan Zhang Jianlong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期195-205,共11页
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b... It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer. 展开更多
关键词 Fluid mechanics BUBBLE mass transfer Wire mesh coupling solid particles Particle image velocimetry Hydrodynamics
下载PDF
Heat and Mass Transfer on Non-Newtonian Peristaltic Flow in a Channel in Presence of Magnetic Field: Analytical and Numerical Analysis
15
作者 Md. Maruf Hasan Md. Enamul Karim Md. Abdus Samad 《Applied Mathematics》 2024年第8期568-583,共16页
A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a... A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters. 展开更多
关键词 Stream Function mass transfer Vertical Channel Casson Fluid
下载PDF
Mass Transfer-Promoted Fe^(2+)/Fe^(3+)Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable Advanced Oxidation Processes
16
作者 Weiyang Lv Hao Li +6 位作者 Jinhui Wang Lixin Wang Zenglong Wu Yuge Wang Wenkai Song Wenkai Cheng Yuyuan Yao 《Engineering》 SCIE EI CAS CSCD 2024年第5期264-275,共12页
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c... Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment. 展开更多
关键词 Advanced oxidation processes 3D co-catalyst Flow-through mode Enhanced mass transfer Complex wastewater treatment
下载PDF
Mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate reverse micelles
17
作者 Chenxian Yang Tianci Li +5 位作者 Tingwei Zhu Xiaojie Duan Yibao Chen Yandong Xu Fusheng Chen Kunlun Liu 《Grain & Oil Science and Technology》 CAS 2024年第1期60-67,共8页
The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer... The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification. 展开更多
关键词 AOT reverse micelles Peanut protein KINETICS Shrinking core model mass transfer
下载PDF
Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method 被引量:1
18
作者 Shuyong CHEN Xigang YUAN +1 位作者 Bo FU Kuotsung YU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2011年第4期448-454,共7页
Interfacial Marangoni convection has signifi-cant effect on gas-liquid and/or liquid-liquid mass transfer processes.In this paper,an approach based on lattice Boltzmann method is established and two perturbation models... Interfacial Marangoni convection has signifi-cant effect on gas-liquid and/or liquid-liquid mass transfer processes.In this paper,an approach based on lattice Boltzmann method is established and two perturbation models,fixed perturbation model and self-renewable interface model,are proposed for the simulation of interfacial Marangoni convection in gas-liquid mass transfer process.The simulation results show that the concentration contours are well consistent with the typical roll cell convection patterns obtained experimentally in previous studies. 展开更多
关键词 interfacial Marangoni convection lattice Boltzmann method gas-liquid mass transfer
原文传递
Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer 被引量:2
19
作者 Qi Han Xin-Yuan Zhang +2 位作者 Hai-Bo Wu Xian-Tai Zhou Hong-Bing Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期84-92,共9页
The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly... The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data. 展开更多
关键词 Membrane microchannel reactor gas-liquid flow mass transfer Benzyl alcohol Computational fluid dynamics(CFD) Bubble column reactor
下载PDF
Quasi‑Solid Electrolyte Interphase Boosting Charge and Mass Transfer for Dendrite‑Free Zinc Battery 被引量:2
20
作者 Xueer Xu Yifei Xu +8 位作者 Jingtong Zhang Yu Zhong Zhongxu Li Huayu Qiu Hao Bin Wu Jie Wang Xiuli Wang Changdong Gu Jiangping Tu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期223-237,共15页
The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase.To enhance th... The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase.To enhance the reversibility of Zn metal,a quasi-solid interphase composed by defective metal-organic framework(MOF)nanoparticles(D-UiO-66)and two kinds of zinc salts electrolytes is fabricated on the Zn surface served as a zinc ions reservoir.Particularly,anions in the aqueous electrolytes could be spontaneously anchored onto the Lewis acidic sites in defective MOF channels.With the synergistic effect between the MOF channels and the anchored anions,Zn^(2+)transport is prompted significantly.Simultaneously,such quasi-solid interphase boost charge and mass transfer of Zn^(2+),leading to a high zinc transference number,good ionic conductivity,and high Zn^(2+)concentration near the anode,which mitigates Zn dendrite growth obviously.Encouragingly,unprecedented average coulombic efficiency of 99.8%is achieved in the Zn||Cu cell with the proposed quasi-solid interphase.The cycling performance of D-UiO-66@Zn||MnO_(2)(~92.9%capacity retention after 2000 cycles)and D-UiO-66@Zn||NH_(4)V_(4)O_(10)(~84.0%capacity retention after 800 cycles)prove the feasibility of the quasi-solid interphase. 展开更多
关键词 mass transfer Defect engineering Quasi-solid electrolyte interphase Zinc metal anode Zinc batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部