Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the r...Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the reducing agent with controlled feed rate and has been investigated as ligand-free catalyst for Suzuki–Miyaura cross-coupling reaction at room temperature in aqueous solution under air.PdNPs catalyst was also prepared in situ from PdCl4_me-Im@SBA-15 during the reaction and demonstrated high activity and stability towards nitrobenzene hydrogenation at high temperature. Both catalysts were reusable at least for four recycle processes without significant loss in activity with simple procedure. The catalysts were characterized by TEM, EXAFS, FTIR and XPS.展开更多
The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pur...The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pure nano-sized CuO exhibits complete furfural hydrogenation and nearly 100%furfuralcohol selectivity,it suffers from rapid deactivation caused by sintering.In this study,we conducted comparative investigations on the catalytic performance and stability of two Cu-based catalysts:90%CuO-10%SiO_(2) and 90%CuO-5%CaO-5%SiO_(2),in the gas-phase furfural hydrogenation.The reaction is carried out under various conditions,including temperatures ranging from 120 to 170℃,LHSVs of 1 to 2.2 h^(-1),and H_(2) to furfural molar ratios of 3.5 to 12.5.The results indicate that under optimal conditions,the Ca-modified catalyst achieves nearly complete furfural conversion and almost 100%furfuralcohol selectivity for a test duration of 31 h.In contrast,the unmodified catalyst exhibits stable performance for only seven hours despite the similar initial performance.XRD analysis confirms that the gradual deactivation of both catalysts is attributed to the oxidation of reduced metallic Cu sites to Cu oxides.Further characterizations of the two spent catalysts using HRTEM and XPS analyses,along with DFT calculations,suggest that the presence of Ca in Cu lattices prevents the loss of electrons from low-valence Cu sites or the reduced metallic Cu sites,thus inhibiting their oxidation to high-valence Cu oxides.This phenomenon contributes to suppressing the deactivation of Cu-catalysts in the gas-phase furfural hydrogenation process.展开更多
A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1...A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.展开更多
In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results s...In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results showed that Pt/g-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.展开更多
Tuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts.Herein,experimental and theoretical calculation demonstrate the or...Tuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts.Herein,experimental and theoretical calculation demonstrate the originally inert N site within polyaniline(PANI)can be activated for hydrogen evolution by proper d-πinterfacial electronic coupling with metal oxide.As a result,the assynthesized WO3 assemblies@PANI via a facile redox-induced assembly and in situ polymerization,exhibits the electrocatalytic production of hydrogen better than other control samples including W18O49@PANI and most of the reported nobel-metal-free electrocatalysts,with low overpotential of 74 mV at 10 mA·cm−2 and small Tafel slope of 46 mV·dec−1 in 0.5M H2SO4(comparable to commercial Pt/C).The general efficacy of this methodology is also validated by extension to other metal oxides such as MoO3 with similar improvements.展开更多
Hydrogen formed in oxidative coupling of methane (OCM) over BaCO3 and MgO catalysts was measured since the data of H2 selectivity were missing almost in all articles published heretofore. It was found that H2 select...Hydrogen formed in oxidative coupling of methane (OCM) over BaCO3 and MgO catalysts was measured since the data of H2 selectivity were missing almost in all articles published heretofore. It was found that H2 selectivity achieved about 18%, when C2 hydrocarbon's selectivity was maintained at 48%-45% over BaCO3 catalyst at the feed molar ratio of CH4/O2 = 4 in temperature range of 780 °C-820 °C. Under similar conditions, H2 selectivity was about 14%-16% over MgO catalyst, with C2 selectivity maintained at 41%-42%. Possible routes for hydrogen formation in OCM reaction were discussed. Effect of addition of alkali metallic ions was also investigated.展开更多
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations...A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness.展开更多
NO_x-catalyzed oxidation of methane without a solid catalyst wasinvestigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of34% and a free O_2 concentration of 1.7% at 700℃.
The consumption of dye-sensitized solar cells (DSSCs) used to produce hydrogen, compared with the traditional water-splitting energy, is much less. First of all it is because of DSSCs’ low cost, easy fabrication proc...The consumption of dye-sensitized solar cells (DSSCs) used to produce hydrogen, compared with the traditional water-splitting energy, is much less. First of all it is because of DSSCs’ low cost, easy fabrication process, high conversion efficiency and good stability;secondly it also solves the problem of serious corrosion of the electrode, for the entire solar system is in the air. We use three tandem dye-sensitized photovoltaic cells as a source of power;the open circuit voltage of photoelectric unit shows the feasibility of using dye-sensitized photovoltaic cell decomposition of water to produce hydrogen.展开更多
In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conv...In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
Changes of the electron dynamics in hydrogen (H2) radio-frequency (RF) inductively coupled plasmas are investigated using a hairpin probe and an intensified charged coupled device (ICCD). The electron density, p...Changes of the electron dynamics in hydrogen (H2) radio-frequency (RF) inductively coupled plasmas are investigated using a hairpin probe and an intensified charged coupled device (ICCD). The electron density, plasma emission intensity, and input current (voltage) are measured during the E to H mode transitions at different pressures. It is found that the electron density, plasma emission intensity, and input current jump up discontinuously, and the input voltage jumps down at the E to H mode transition points. And the threshold power of the E to H mode transition decreases with the increase of the pressure. Moreover, space and phase resolved optical emission spectroscopic measurements reveal that, in the E mode, the RF dynamics is characterized by one dominant excitation per RF cycle, while in the H mode, there are two excitation maxima within one cycle.展开更多
Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel.Bulk semiconductors generally suffer from...Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel.Bulk semiconductors generally suffer from certain limitations,such as poor visible-light utilization,rapid recombination of charge carriers,and low catalytic capability.The key challenge is to develop visible-light-driven heterojunction photocatalysts that are stable and highly active during the water splitting process.Here,we demonstrate the integration of one-dimensional(1D)Cd S nanorods with two-dimensional(2D)1 T-phase dominated WS_(2) nanosheets for constructing mixed-dimensional heterojunctions for the photocatalytic hydrogen evolution reaction(HER).The resulting 1D CdS/2D WS_(2) nanoheterojunction exhibited an ultrahigh hydrogen-evolution activity of~70 mmol·g^(-1)·h^(-1) that was visible to the naked eye,as well as long-term stability under visible light illumination.The results reveal that the synergy of hybrid nanoarchitectures and intimate interfacial contact between the 1D Cd S nanorods and 1T-phase dominated 2D WS_(2) nanosheets facilitates charge carrier transport,which is beneficial for achieving superior hydrogen evolution.展开更多
Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic func...Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic functional components Rh and K.While unmodifiedβMo_(2)C could only convert CO_(2)to methanol,the designed catalyst of K_(0.2)Rh_(0.2)/β-Mo_(2)C exhibited up to 72.1%of ethanol selectivity at 150℃.It was observed that the atomically dispersed Rh could form the bifunctional active centres with the active carrierβMo_(2)C with the synergistic effects to achieve highly specific controlled C–C coupling.By promoting the CO_(2)adsorption and activation,the introduction of an alkali metal(K)mainly regulated the balanced performance of the two active centres,which in turn improved the hydrogenation selectivity.Overall,the controlled modification ofβMo_(2)C provides a new design strategy for the highly efficient,lowtemperature hydrogenation of CO_(2)to ethanol with single-atom catalysts,which provides an excellent example for the rational design of the complex catalysts.展开更多
To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid c...To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid carbon emissions from hydrogen production,which is traditionally performed using fossil fuels;Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand.In this study,we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system,particularly that derived from hydrogen storage.An electricity-hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy.Based on this model and considering Northwest China as the region of study,the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels.The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term,contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost.This advantage can be further improved when the hydrogen demand rises.However,a cost reduction by 20%is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems.This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.展开更多
Integrating selective organic synthesis with hydrogen(H_(2))evolution in one photocatalytic redox reaction system sheds light on the underlying approach for concurrent employment of photogenerated electrons and holes ...Integrating selective organic synthesis with hydrogen(H_(2))evolution in one photocatalytic redox reaction system sheds light on the underlying approach for concurrent employment of photogenerated electrons and holes towards efficient production of solar fuels and chemicals.In this work,a facile one‐pot oil bath method has been proposed to fabricate a noble metal‐free ultrathin Ni‐doped ZnIn_(2)S_(4)(ZIS/Ni)composite nanosheet for effective solar‐driven selective dehydrocoupling of benzyl alcohol into value‐added C–C coupled hydrobenzoin and H_(2) fuel,which exhibits higher performance than pure ZIS nanosheet.The remarkably improved photoredox activity of ZIS/Ni is mainly attributed to the optimized electron structure featuring narrower band gap and suitable energy band position,which facilitates the ability of light harvesting and photoexcited charge carrier separation and transfer.Furthermore,it has been demonstrated that it is feasible to employ ZIS/Ni for various aromatic alcohols dehydrocoupling to the corresponding C–C coupled products.It is expected that this work can stimulate further interest on the establishment of innovative photocatalytic redox platform coupling clean solar fuels synthesis and selective organic conversion in a sustainable manner.展开更多
The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to ac...The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to achieve a self-standing electrode,composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters(ACP/Ru_(SAC+C))via acid activation,immersion,and high-temperature pyrolysis.Ab initio molecular dynamics(AIMD)calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper.Furthermore,the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy(AC-STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS).Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect,tuning the electronic structure and thereby significantly enhancing their catalytic performance.Notably,the ACP/Ru_(SAC+C)exhibits a remarkable turnover frequency(TOF)of 18 s^(−1)and an exceptional mass activity(MA)of 2.2 A mg^(−1),surpassing the performance of conventional Pt electrodes.The self-standing electrode,featuring harmoniously coexisting Ru states,stands out as a prospective choice for advancing HER catalysts,enhancing energy efficiency,productivity,and selectivity.展开更多
At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages...At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.展开更多
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s...With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.展开更多
基金the financial support from the Institute for Quantum Chemical Exploration(IQCE)
文摘Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the reducing agent with controlled feed rate and has been investigated as ligand-free catalyst for Suzuki–Miyaura cross-coupling reaction at room temperature in aqueous solution under air.PdNPs catalyst was also prepared in situ from PdCl4_me-Im@SBA-15 during the reaction and demonstrated high activity and stability towards nitrobenzene hydrogenation at high temperature. Both catalysts were reusable at least for four recycle processes without significant loss in activity with simple procedure. The catalysts were characterized by TEM, EXAFS, FTIR and XPS.
基金financially supported by Youth Fund of National Natural Science Foundation of China(NO.22108175)National Natural Science Foundation of China(U190310)+3 种基金Natural Science Foundation of Liaoning province(2021-NLTS-12-09)Liaoning Innovation Talents Program in University(Liao[2020]389)Liaoning Revitalization Talents Program(XLYC1907029)Shenyang Young and Middle-aged Science&Technology Talents Program(RC210365).
文摘The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pure nano-sized CuO exhibits complete furfural hydrogenation and nearly 100%furfuralcohol selectivity,it suffers from rapid deactivation caused by sintering.In this study,we conducted comparative investigations on the catalytic performance and stability of two Cu-based catalysts:90%CuO-10%SiO_(2) and 90%CuO-5%CaO-5%SiO_(2),in the gas-phase furfural hydrogenation.The reaction is carried out under various conditions,including temperatures ranging from 120 to 170℃,LHSVs of 1 to 2.2 h^(-1),and H_(2) to furfural molar ratios of 3.5 to 12.5.The results indicate that under optimal conditions,the Ca-modified catalyst achieves nearly complete furfural conversion and almost 100%furfuralcohol selectivity for a test duration of 31 h.In contrast,the unmodified catalyst exhibits stable performance for only seven hours despite the similar initial performance.XRD analysis confirms that the gradual deactivation of both catalysts is attributed to the oxidation of reduced metallic Cu sites to Cu oxides.Further characterizations of the two spent catalysts using HRTEM and XPS analyses,along with DFT calculations,suggest that the presence of Ca in Cu lattices prevents the loss of electrons from low-valence Cu sites or the reduced metallic Cu sites,thus inhibiting their oxidation to high-valence Cu oxides.This phenomenon contributes to suppressing the deactivation of Cu-catalysts in the gas-phase furfural hydrogenation process.
基金supported by the National Natural Science Foundation of China (No. 20971080)the Natural Science Foundation of Shandong Province (No. ZR2009BM026 and ZR2009BL002)
文摘A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.
文摘In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results showed that Pt/g-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.
基金The authors appreciate the supports from the National Research Foundation(NRF),Prime Minister’s Office,Singapore,under its Campus for Research Excellence and Technological Enterprise(CREATE)programme.We also acknowledge financial support from the academic research fund AcRF tier 2(M4020246,ARC10/15),Ministry of Education,Singapore.
文摘Tuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts.Herein,experimental and theoretical calculation demonstrate the originally inert N site within polyaniline(PANI)can be activated for hydrogen evolution by proper d-πinterfacial electronic coupling with metal oxide.As a result,the assynthesized WO3 assemblies@PANI via a facile redox-induced assembly and in situ polymerization,exhibits the electrocatalytic production of hydrogen better than other control samples including W18O49@PANI and most of the reported nobel-metal-free electrocatalysts,with low overpotential of 74 mV at 10 mA·cm−2 and small Tafel slope of 46 mV·dec−1 in 0.5M H2SO4(comparable to commercial Pt/C).The general efficacy of this methodology is also validated by extension to other metal oxides such as MoO3 with similar improvements.
文摘Hydrogen formed in oxidative coupling of methane (OCM) over BaCO3 and MgO catalysts was measured since the data of H2 selectivity were missing almost in all articles published heretofore. It was found that H2 selectivity achieved about 18%, when C2 hydrocarbon's selectivity was maintained at 48%-45% over BaCO3 catalyst at the feed molar ratio of CH4/O2 = 4 in temperature range of 780 °C-820 °C. Under similar conditions, H2 selectivity was about 14%-16% over MgO catalyst, with C2 selectivity maintained at 41%-42%. Possible routes for hydrogen formation in OCM reaction were discussed. Effect of addition of alkali metallic ions was also investigated.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness.
基金The project supported by the Ministry of Science and Technology China(G1999022202).
文摘NO_x-catalyzed oxidation of methane without a solid catalyst wasinvestigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of34% and a free O_2 concentration of 1.7% at 700℃.
文摘The consumption of dye-sensitized solar cells (DSSCs) used to produce hydrogen, compared with the traditional water-splitting energy, is much less. First of all it is because of DSSCs’ low cost, easy fabrication process, high conversion efficiency and good stability;secondly it also solves the problem of serious corrosion of the electrode, for the entire solar system is in the air. We use three tandem dye-sensitized photovoltaic cells as a source of power;the open circuit voltage of photoelectric unit shows the feasibility of using dye-sensitized photovoltaic cell decomposition of water to produce hydrogen.
文摘In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075029,11175034,and 11205025)the Fundamental Research Funds for Central Universities,China(Grant No.DUT12RC(3)14)
文摘Changes of the electron dynamics in hydrogen (H2) radio-frequency (RF) inductively coupled plasmas are investigated using a hairpin probe and an intensified charged coupled device (ICCD). The electron density, plasma emission intensity, and input current (voltage) are measured during the E to H mode transitions at different pressures. It is found that the electron density, plasma emission intensity, and input current jump up discontinuously, and the input voltage jumps down at the E to H mode transition points. And the threshold power of the E to H mode transition decreases with the increase of the pressure. Moreover, space and phase resolved optical emission spectroscopic measurements reveal that, in the E mode, the RF dynamics is characterized by one dominant excitation per RF cycle, while in the H mode, there are two excitation maxima within one cycle.
文摘Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel.Bulk semiconductors generally suffer from certain limitations,such as poor visible-light utilization,rapid recombination of charge carriers,and low catalytic capability.The key challenge is to develop visible-light-driven heterojunction photocatalysts that are stable and highly active during the water splitting process.Here,we demonstrate the integration of one-dimensional(1D)Cd S nanorods with two-dimensional(2D)1 T-phase dominated WS_(2) nanosheets for constructing mixed-dimensional heterojunctions for the photocatalytic hydrogen evolution reaction(HER).The resulting 1D CdS/2D WS_(2) nanoheterojunction exhibited an ultrahigh hydrogen-evolution activity of~70 mmol·g^(-1)·h^(-1) that was visible to the naked eye,as well as long-term stability under visible light illumination.The results reveal that the synergy of hybrid nanoarchitectures and intimate interfacial contact between the 1D Cd S nanorods and 1T-phase dominated 2D WS_(2) nanosheets facilitates charge carrier transport,which is beneficial for achieving superior hydrogen evolution.
基金financially supported by the National Natural Science Foundation of China(21925803,U19A2015)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB36030200)the Liao Ning Revitalization Talents Program(XLYC1907170).
文摘Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic functional components Rh and K.While unmodifiedβMo_(2)C could only convert CO_(2)to methanol,the designed catalyst of K_(0.2)Rh_(0.2)/β-Mo_(2)C exhibited up to 72.1%of ethanol selectivity at 150℃.It was observed that the atomically dispersed Rh could form the bifunctional active centres with the active carrierβMo_(2)C with the synergistic effects to achieve highly specific controlled C–C coupling.By promoting the CO_(2)adsorption and activation,the introduction of an alkali metal(K)mainly regulated the balanced performance of the two active centres,which in turn improved the hydrogenation selectivity.Overall,the controlled modification ofβMo_(2)C provides a new design strategy for the highly efficient,lowtemperature hydrogenation of CO_(2)to ethanol with single-atom catalysts,which provides an excellent example for the rational design of the complex catalysts.
基金National Natural Science Foundation of China(program number 51707108)Global Energy Interconnection Group Co.,Ltd.Science and Technology Project(2700/2020-75001B).
文摘To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid carbon emissions from hydrogen production,which is traditionally performed using fossil fuels;Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand.In this study,we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system,particularly that derived from hydrogen storage.An electricity-hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy.Based on this model and considering Northwest China as the region of study,the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels.The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term,contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost.This advantage can be further improved when the hydrogen demand rises.However,a cost reduction by 20%is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems.This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.
文摘Integrating selective organic synthesis with hydrogen(H_(2))evolution in one photocatalytic redox reaction system sheds light on the underlying approach for concurrent employment of photogenerated electrons and holes towards efficient production of solar fuels and chemicals.In this work,a facile one‐pot oil bath method has been proposed to fabricate a noble metal‐free ultrathin Ni‐doped ZnIn_(2)S_(4)(ZIS/Ni)composite nanosheet for effective solar‐driven selective dehydrocoupling of benzyl alcohol into value‐added C–C coupled hydrobenzoin and H_(2) fuel,which exhibits higher performance than pure ZIS nanosheet.The remarkably improved photoredox activity of ZIS/Ni is mainly attributed to the optimized electron structure featuring narrower band gap and suitable energy band position,which facilitates the ability of light harvesting and photoexcited charge carrier separation and transfer.Furthermore,it has been demonstrated that it is feasible to employ ZIS/Ni for various aromatic alcohols dehydrocoupling to the corresponding C–C coupled products.It is expected that this work can stimulate further interest on the establishment of innovative photocatalytic redox platform coupling clean solar fuels synthesis and selective organic conversion in a sustainable manner.
基金supported by the National Research Foundation of Korea(NRF),funded by the Korean government(2022M3H4A1A01012712,2022M3H4A1A04096380)S.Back acknowledges the support from the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2016R1A6A1A03012845)and generous supercomputing time from KISTI.
文摘The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to achieve a self-standing electrode,composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters(ACP/Ru_(SAC+C))via acid activation,immersion,and high-temperature pyrolysis.Ab initio molecular dynamics(AIMD)calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper.Furthermore,the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy(AC-STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS).Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect,tuning the electronic structure and thereby significantly enhancing their catalytic performance.Notably,the ACP/Ru_(SAC+C)exhibits a remarkable turnover frequency(TOF)of 18 s^(−1)and an exceptional mass activity(MA)of 2.2 A mg^(−1),surpassing the performance of conventional Pt electrodes.The self-standing electrode,featuring harmoniously coexisting Ru states,stands out as a prospective choice for advancing HER catalysts,enhancing energy efficiency,productivity,and selectivity.
基金financed by the National Key Research and Development Program of China[grants number 2022YFB3803800]the National Natural Science Foundation of China[grants number 52071141,52271212,52201250,51771056]Interdisciplinary Innovation Program of North China Electric Power University[grants number XM2112355].
文摘At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.
基金supported in part by the“Chunhui Plan”Collaborative Research Project of Chinese Ministry of Education under Grant HZKY20220604by the National Natural Science Foundation of China under Grant 52107007。
文摘With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.