Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and...Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.展开更多
Hexanuclear ruthenium cluster compound Ru<sub>6</sub>C (CO)<sub>17</sub> has interesting activity in the gase-phase. The ion-molecular reaction of Ru<sub>6</sub>C (CO)<sub>...Hexanuclear ruthenium cluster compound Ru<sub>6</sub>C (CO)<sub>17</sub> has interesting activity in the gase-phase. The ion-molecular reaction of Ru<sub>6</sub>C (CO)<sub>17</sub> with triphcnylphosphine was investigated by EI-MS. The experimental results showed that Ru<sub>6</sub>C (CO)<sub>17</sub> could undergo the ligand substitution by PPh<sub>2</sub> or PPh<sub>3</sub> to initially yield monosubstituted product [Ru<sub>6</sub>C(CO)<sub>16</sub>PPh<sub>2</sub>]<sup>+</sup> or [Ru<sub>6</sub>C (CO)<sub>16</sub>PPh<sub>3</sub>]<sup>+</sup>.展开更多
While alloying transition metal chalcogenides(TMCs)with other chalcogen elements can effectively improve their conductivity and electrochemical properties,the optimal alloying content is still uncertain.In this study,...While alloying transition metal chalcogenides(TMCs)with other chalcogen elements can effectively improve their conductivity and electrochemical properties,the optimal alloying content is still uncertain.In this study,we study the influence of dopant concentration on the chemical bonds in TMC and reveal the associated stepwise conversion reaction mechanism for potassium ion storage.According to density function theory calculations,appropriate S-doping in Co0.85Se(Co_(0.85)Se_(1-x)S_(x))can reduce the average length of Co-Co bonds because of the electronegativity variation,which is thermodynamically favourable to the phase transition reactions.The optimal Se/S ratio(x=0.12)for the conductivity has been obtained from experimental results.When assembled as an anode in potassium-ion batteries(PIBs),the sample with optimized Se/S ratio exhibits extraordinary electrochemical performance.The rate performance(229.2 mA h g^(-1)at 10 A g^(-1))is superior to the state-of-the-art results.When assembled with Prussian blue(PB)as a cathode,the pouch cell exhibits excellent performance,demonstrating its great potential for applications.Moreover,the stepwise K+storage mechanism caused by the coexistence of S and Se is revealed by in-situ X-ray diffraction and ex-situ transmission electron microscopy techniques.Hence,this work not only provides an effective strategy to enhance the electrochemical performance of transition metal chalcogenides but also reveals the underlying mechanism for the construction of advanced electrode materials.展开更多
Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction tem...Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.展开更多
In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy stora...In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy storage technologies,which show the potential in matching or even surpassing the current lithium metal batteries in terms of energy density,dendrite-free safety,and elimination of the dependence on the strained lithium and cobalt resources.However,the development of CIBs is still at the initial stage with unsatisfactory performance and several challenges have hindered them from reaching commercialization.In this review,we examine the current advances of CIBs by considering the electrode material design to the electrolyte,thus outlining the new opportunities of aqueous CIBs especially combined with desalination,chloride redox battery,etc.With respect to the developing road of lithium ion and fluoride ion batteries,the possibility of using solid-state chloride ion conductors to replace liquid electrolytes is tentatively discussed.Going beyond,perspectives and clear suggestions are concluded by highlighting the major obstacles and by prescribing specific research topics to inspire more efforts for CIBs in large-scale energy storage applications.展开更多
Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts ...Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts and pH levels, and to study the effects ofelectrolytes on hydroxyl release. Hydroxyl release increased with the selenite concentration, with arapid increase at a low selenite concentration while slowing down at a high concentration. The pHwhere maximum of hydroxyl release appeared was not constant, shifting to a lower valus withincreasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a highelectrolyte concentration. For NaClO_4, NaCl and Na_2SO_4, hydroxyl release was in the order ofNaClO_4 > NaCl >> Na_2SO_4, and the difference was very significant. But for NaCl, KCl and CaCl_2,the order of hydroxyl release was NaCl > KCl > CaCl_2, and the difference was smaller. The amount ofhydroxyl release from Xuwen latosol was greater than that from Jinxian red soil. Hydroxyl releaseexisted in a wider range of pH with Xuwen latosol than with Jinxian red soil, due to theirdifference in soil properties. However, both soils had similar curves of hydroxyl release,indicating the common characteristics of variable charge soils.展开更多
The rate constants of the nucleophilic reactions between amines and benzhydrylium ions were calculated using first-principles theoretical methods. Solvation models including PCM, CPCM, and COSMORS, as well as differen...The rate constants of the nucleophilic reactions between amines and benzhydrylium ions were calculated using first-principles theoretical methods. Solvation models including PCM, CPCM, and COSMORS, as well as different types of atomic radii including UA0, UAKS, UAHF, Bondi, and UFF, and several single-point energy calculation methods (B3LYP, B3P86, B3PW91, BHANDH, PBEPBE, BMK, M06, MP2, and ONIOM method) were examined. By comparing the correlation between experimental rate constants and the calculated values, the ONIOM(CCSD(T)/6-311++G(2df,2p):B3LYP/6-311++G(2df,2p))//B3LYP/6- 31G(d)/PCM/UFF) method was found to perform the best. This method was then employed to calculate the rate constants of the reactions between diverse amines and diarylcarbenium ions. The calculated rate constants for 65 reactions of amines with diarylcarbenium ions are in agreement with the experimental values, indicating that it is feasible to predict the rate constant of a reaction between an amine and a diarylcarbenium ion through ab initio calculation.展开更多
Intercalation of lithium ions into the electrodes of lithium ion batteries is affected by the stress of active materials, leading to energy dissipation and stress dependent voltage hysteresis. A reaction-diffusion-str...Intercalation of lithium ions into the electrodes of lithium ion batteries is affected by the stress of active materials, leading to energy dissipation and stress dependent voltage hysteresis. A reaction-diffusion-stress coupling model is established to investigate the stress effects under galvanostatic and potentiostatic operations. It is found from simulations that the stress hysteresis contributes to the voltage hysteresis and leads to the energy dissipation. In addition, the stress induced voltage hysteresis is small in low rate galvanostatic operations but extraordinarily significant in high rate cases. In potentiostatic operations, the stresses and stress induced overpotentials increase to a peak value very soon after the operation commences and decays all the left time. Therefore,a combined charge-discharge operation is suggested, i.e., first the galvanostatic one and then the potentiostatic one. This combined operation can not only avoid the extreme stress during operations so as to prevent electrodes from failure but also reduce the voltage hysteresis and energy dissipation due to stress effects.展开更多
A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first sev...A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.展开更多
Efficient metal recovery from industrial wastewater facilitates addressing of the environmental hazards and resource requirements of heavy metals.The conventional electrodeposition recovery method is hampered by the l...Efficient metal recovery from industrial wastewater facilitates addressing of the environmental hazards and resource requirements of heavy metals.The conventional electrodeposition recovery method is hampered by the limitations of interfacial ion transport in charge-transfer reactions,creating challenges for simultaneous rapid and high-quality metal recovery.Therefore,we proposed integrating a transient electric field(TE)and swirling flow(SF)to synchronously enhance bulk mass transfer and promote interfacial ion transport.We investigated the effects of the operation mode,transient frequency,and flow rate on metal recovery,enabling determination of the optimal operating conditions for rapid and efficient sequential recovery of Cu in TE&SF mode.These conditions included low and high electric levels of 0 and 4 V,a 50%duty cycle,1 kHz frequency,and 400 L·h^(-1)flow rate.The kinetic coefficients of TE&SF electrodeposition were 3.5-4.3 and 1.37-1.97 times that of single TE and SF electrodeposition,respectively.Simulating the deposition process under TE and SF conditions confirmed the efficient concurrence of interfacial ion transport and charge transfer under TE and SF synergy,which achieved rapid and highquality metal recovery.Therefore,the combined deposition strategy is considered an effective technique for reducing metal pollution and promoting resource recycling.展开更多
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch...Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.展开更多
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ...Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.展开更多
The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evapora...The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ^(148)Xe+^(208)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of ^(208)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
We report a reconstruction method for fast-fission events in 25 MeV/u^(86)Kr +^(208)Pb reactions at the Compact Spectrometer for Heavy Ion Experiment(CSHINE). The fission fragments(FFs) are measured using three large-...We report a reconstruction method for fast-fission events in 25 MeV/u^(86)Kr +^(208)Pb reactions at the Compact Spectrometer for Heavy Ion Experiment(CSHINE). The fission fragments(FFs) are measured using three large-area parallel-plate avalanche counters, which can deliver the position and arrival timing information of the fragments. The start timing information is provided by the radio frequency of the cyclotron. Fission events were reconstructed using the velocities of the two FFs. The broadening of both the velocity distribution and azimuthal difference of the FFs decreases with the folding angle, in accordance with the picture that fast fission occurs. The anisotropic angular distribution of the fission axis also consistently reveals the dynamic features of fission events.展开更多
Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the ...Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.展开更多
Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a prec...Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries.展开更多
LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemi...LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles.展开更多
Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution ...Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries.展开更多
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with ...Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.展开更多
文摘Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.
基金This work was supported by Fujian Natural Science Found
文摘Hexanuclear ruthenium cluster compound Ru<sub>6</sub>C (CO)<sub>17</sub> has interesting activity in the gase-phase. The ion-molecular reaction of Ru<sub>6</sub>C (CO)<sub>17</sub> with triphcnylphosphine was investigated by EI-MS. The experimental results showed that Ru<sub>6</sub>C (CO)<sub>17</sub> could undergo the ligand substitution by PPh<sub>2</sub> or PPh<sub>3</sub> to initially yield monosubstituted product [Ru<sub>6</sub>C(CO)<sub>16</sub>PPh<sub>2</sub>]<sup>+</sup> or [Ru<sub>6</sub>C (CO)<sub>16</sub>PPh<sub>3</sub>]<sup>+</sup>.
基金financially supported by the Natural Science Foundation of Jiangsu Province of China(BK20211172)the Jiangsu Provincial Department of Science and Technology Innovation Support Program(BK20222004,BZ2022036)+1 种基金the National Natural Science Foundation of China(52002366,22075263)the Fundamental Research Funds for the Central Universities(WK2060000039)。
文摘While alloying transition metal chalcogenides(TMCs)with other chalcogen elements can effectively improve their conductivity and electrochemical properties,the optimal alloying content is still uncertain.In this study,we study the influence of dopant concentration on the chemical bonds in TMC and reveal the associated stepwise conversion reaction mechanism for potassium ion storage.According to density function theory calculations,appropriate S-doping in Co0.85Se(Co_(0.85)Se_(1-x)S_(x))can reduce the average length of Co-Co bonds because of the electronegativity variation,which is thermodynamically favourable to the phase transition reactions.The optimal Se/S ratio(x=0.12)for the conductivity has been obtained from experimental results.When assembled as an anode in potassium-ion batteries(PIBs),the sample with optimized Se/S ratio exhibits extraordinary electrochemical performance.The rate performance(229.2 mA h g^(-1)at 10 A g^(-1))is superior to the state-of-the-art results.When assembled with Prussian blue(PB)as a cathode,the pouch cell exhibits excellent performance,demonstrating its great potential for applications.Moreover,the stepwise K+storage mechanism caused by the coexistence of S and Se is revealed by in-situ X-ray diffraction and ex-situ transmission electron microscopy techniques.Hence,this work not only provides an effective strategy to enhance the electrochemical performance of transition metal chalcogenides but also reveals the underlying mechanism for the construction of advanced electrode materials.
基金Project supported by the Research Funds of the Key Laboratory of Fuel Cell Technology of Guangdong Province,ChinaProject(7411793079907)supported by the Guangzhou Special Foundation for Applied Basic Research+1 种基金Project(2013A15GX048)supported by the Dalian Science and Technology Project Foundation,ChinaProject(21376035)supported by the National Natural Science Foundation of China
文摘Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.
基金the support of the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program (TC220H06N)the National Natural Science Foundation of China (51832004,51972259,52127816)the Natural Science Foundation of Hubei Province (2022CFA087)。
文摘In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy storage technologies,which show the potential in matching or even surpassing the current lithium metal batteries in terms of energy density,dendrite-free safety,and elimination of the dependence on the strained lithium and cobalt resources.However,the development of CIBs is still at the initial stage with unsatisfactory performance and several challenges have hindered them from reaching commercialization.In this review,we examine the current advances of CIBs by considering the electrode material design to the electrolyte,thus outlining the new opportunities of aqueous CIBs especially combined with desalination,chloride redox battery,etc.With respect to the developing road of lithium ion and fluoride ion batteries,the possibility of using solid-state chloride ion conductors to replace liquid electrolytes is tentatively discussed.Going beyond,perspectives and clear suggestions are concluded by highlighting the major obstacles and by prescribing specific research topics to inspire more efforts for CIBs in large-scale energy storage applications.
基金Project supported by the National Natural Science Foundation of China(Nos.49971046 and 49831005).
文摘Hydroxyl release of red soil and latosol surfaces was quantitatively measuredusing a self-made constant pH automated titration instrument, to study the changes of hydroxylrelease with different added selenite amounts and pH levels, and to study the effects ofelectrolytes on hydroxyl release. Hydroxyl release increased with the selenite concentration, with arapid increase at a low selenite concentration while slowing down at a high concentration. The pHwhere maximum of hydroxyl release appeared was not constant, shifting to a lower valus withincreasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a highelectrolyte concentration. For NaClO_4, NaCl and Na_2SO_4, hydroxyl release was in the order ofNaClO_4 > NaCl >> Na_2SO_4, and the difference was very significant. But for NaCl, KCl and CaCl_2,the order of hydroxyl release was NaCl > KCl > CaCl_2, and the difference was smaller. The amount ofhydroxyl release from Xuwen latosol was greater than that from Jinxian red soil. Hydroxyl releaseexisted in a wider range of pH with Xuwen latosol than with Jinxian red soil, due to theirdifference in soil properties. However, both soils had similar curves of hydroxyl release,indicating the common characteristics of variable charge soils.
文摘The rate constants of the nucleophilic reactions between amines and benzhydrylium ions were calculated using first-principles theoretical methods. Solvation models including PCM, CPCM, and COSMORS, as well as different types of atomic radii including UA0, UAKS, UAHF, Bondi, and UFF, and several single-point energy calculation methods (B3LYP, B3P86, B3PW91, BHANDH, PBEPBE, BMK, M06, MP2, and ONIOM method) were examined. By comparing the correlation between experimental rate constants and the calculated values, the ONIOM(CCSD(T)/6-311++G(2df,2p):B3LYP/6-311++G(2df,2p))//B3LYP/6- 31G(d)/PCM/UFF) method was found to perform the best. This method was then employed to calculate the rate constants of the reactions between diverse amines and diarylcarbenium ions. The calculated rate constants for 65 reactions of amines with diarylcarbenium ions are in agreement with the experimental values, indicating that it is feasible to predict the rate constant of a reaction between an amine and a diarylcarbenium ion through ab initio calculation.
基金supported by the National Natural Science Foundation of China(Nos.11672170,11332005,and 11702166)the Natural Science Foundation of Shanghai(No.16ZR1412200)
文摘Intercalation of lithium ions into the electrodes of lithium ion batteries is affected by the stress of active materials, leading to energy dissipation and stress dependent voltage hysteresis. A reaction-diffusion-stress coupling model is established to investigate the stress effects under galvanostatic and potentiostatic operations. It is found from simulations that the stress hysteresis contributes to the voltage hysteresis and leads to the energy dissipation. In addition, the stress induced voltage hysteresis is small in low rate galvanostatic operations but extraordinarily significant in high rate cases. In potentiostatic operations, the stresses and stress induced overpotentials increase to a peak value very soon after the operation commences and decays all the left time. Therefore,a combined charge-discharge operation is suggested, i.e., first the galvanostatic one and then the potentiostatic one. This combined operation can not only avoid the extreme stress during operations so as to prevent electrodes from failure but also reduce the voltage hysteresis and energy dissipation due to stress effects.
基金Project supported by the National Natural Science Foundation of China (Nos. 49971046 and 49831005).
文摘A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.
基金supported financially by the National Natural Science Foundation of China(52221004).
文摘Efficient metal recovery from industrial wastewater facilitates addressing of the environmental hazards and resource requirements of heavy metals.The conventional electrodeposition recovery method is hampered by the limitations of interfacial ion transport in charge-transfer reactions,creating challenges for simultaneous rapid and high-quality metal recovery.Therefore,we proposed integrating a transient electric field(TE)and swirling flow(SF)to synchronously enhance bulk mass transfer and promote interfacial ion transport.We investigated the effects of the operation mode,transient frequency,and flow rate on metal recovery,enabling determination of the optimal operating conditions for rapid and efficient sequential recovery of Cu in TE&SF mode.These conditions included low and high electric levels of 0 and 4 V,a 50%duty cycle,1 kHz frequency,and 400 L·h^(-1)flow rate.The kinetic coefficients of TE&SF electrodeposition were 3.5-4.3 and 1.37-1.97 times that of single TE and SF electrodeposition,respectively.Simulating the deposition process under TE and SF conditions confirmed the efficient concurrence of interfacial ion transport and charge transfer under TE and SF synergy,which achieved rapid and highquality metal recovery.Therefore,the combined deposition strategy is considered an effective technique for reducing metal pollution and promoting resource recycling.
基金financially supported by NSFC (Grant Nos.21621091,21373008)the National Key Research and Development Program of China (2016YFB0100202)
文摘Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.
基金supported by the Key Program of Natural Science Foundation of Gansu Province (23JRRA789)the Major Science and Technology Project of Gansu Province (22ZD6GA008)。
文摘Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.
基金supported by the National Natural Science Foundation of China under Grants Nos.11635003,11025524 and 11161130520the National Basic Research Program of China under Grant No.2010CB832903+1 种基金the European Commission’s 7th Framework Programme(Fp7-PEOPLE-2010-IRSES)under Grant Agreement Project No.269131the Project funded by China Postdoctoral Science Foundation(Grant No.2016M600956)
文摘The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ^(148)Xe+^(208)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of ^(208)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
基金supported by the National Natural Science Foundation of China(Nos.11875174,11961131010,and 11961141004)the Polish National Science Center(No.2018/30/Q/ST2/00185)。
文摘We report a reconstruction method for fast-fission events in 25 MeV/u^(86)Kr +^(208)Pb reactions at the Compact Spectrometer for Heavy Ion Experiment(CSHINE). The fission fragments(FFs) are measured using three large-area parallel-plate avalanche counters, which can deliver the position and arrival timing information of the fragments. The start timing information is provided by the radio frequency of the cyclotron. Fission events were reconstructed using the velocities of the two FFs. The broadening of both the velocity distribution and azimuthal difference of the FFs decreases with the folding angle, in accordance with the picture that fast fission occurs. The anisotropic angular distribution of the fission axis also consistently reveals the dynamic features of fission events.
文摘Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries.
基金Project(76600)supported by Postdoctoral Science Foundation of Central South University
文摘LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF-2019R1A2C1084836,NRF-2021R1A4A2001403,NRF-2022R1C1C1011484。
文摘Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries.
基金This work was financially supported by the National Natural Science Foundation of China (No.50272012).
文摘Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.