Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness,high element abundance,and low cost.Here,we developed a strategy of one-step ga...Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness,high element abundance,and low cost.Here,we developed a strategy of one-step gas-solid-phase diffusioninduced reaction to fabricate a series of bandgap-tunable Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI bilayer films due to the atomic diffusion effect for the first time.By designing and regulating the sputtered Cu/Ag/Bi metal film thickness,the bandgap of Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI could be reduced from 2.06 to 1.78 eV.Solar cells with the structure of FTO/TiO_(2)/Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI/carbon were constructed,yielding a champion power conversion efficiency of 2.76%,which is the highest reported for this class of materials owing to the bandgap reduction and the peculiar bilayer structure.The current work provides a practical path for developing the next generation of efficient,stable,and environmentally friendly photovoltaic materials.展开更多
The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The resu...The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.展开更多
The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r...The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.展开更多
A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford b...A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed.展开更多
Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%)...Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.展开更多
The burgeoning field of photocatalytic reduction of CO_(2)has emerged as a remarkable promising solution to address some of the most pressing global energy and environmental issues which we face today.Researchers arou...The burgeoning field of photocatalytic reduction of CO_(2)has emerged as a remarkable promising solution to address some of the most pressing global energy and environmental issues which we face today.Researchers around the global have been striving to augment the efficiency of CO_(2)photocatalytic reduction,employing strategies that range from modifying the fundamental properties of photocatalysts to suppress the electron-hole recombination,optimizing reaction conditions to achieve the highest yield,and conceptualizing and constructing photoreactors to improve the adsorption process.Among these factors,the photoreactor plays a critical role in enhancing the overall photocatalytic efficiency.Understanding the various types of photoreactors and their operational dynamic can significantly influence the experimental design,thus guiding the data collecting and analysis.Compared to the solid-liquid phase,gas-solid phase photocatalytic reduction of CO_(2)is gaining recognition for its potential advantages,such as rapid molecular diffusion rates,adjustable CO_(2)concentrations,and uniform and sufficient light exposure.Nonetheless,the currently reported gas-solid phase photoreactors are still in their infancy.In this review,we dissect the underlying mechanism of photocatalytic CO_(2)reduction and the performance evaluation criteria of photoreactors,and review the development process of gas-solid phase photoreactors.Furthermore,we explore the evolution of gas-solid phase photoreactors,elucidating their growth trajectory and future possibilities.We present a comprehensive classification of gas-solid phase photoreactors,offering a new insight into their design and functionality,summarizing their strengths and inevitable limitations.Finally,we provide a forward-looking perspective on the future developmental prospects of carbon neutrality.展开更多
Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling...Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.展开更多
The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins ...The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins in the thioetherification process using fluidized catalytic cracking(FCC) naphtha as the feedstock was investigated. In order to disclose the correlation between the physicochemical characteristics of catalysts and their catalytic activity, the surface structures and properties of the catalysts sulfided at different temperatures were characterized by the high resolution transmission electronic microscopy(HRTEM), X-ray photoelectron spectroscopy(XPS) and H2-temperature programmed reduction(H_2-TPR) technique. The results showed that an increase of sulfurization temperature not only could promote the sulfurization degree of active metals on the catalysts, but also could adjust the micro-morphology of active species. These changes could improve the catalytic performance of thioetherification, and hydrogenation of dienes and olefins. However, an excess sulfurization temperature was more easily to upgrade the ability of the catalyst for hydrogenation of olefins, which could lead to a decrease of the octane number of the product. It was also showed that a moderate sulfurization temperature not only could improve the catalytic performance of thioetherification and hydrogenation of dienes but also could control hydrogenation of olefins.展开更多
1 INTRODUCTIONSince the invention of asymmetric membrane by Loeb and Sourirajan [1],membraneseparation processes have attracted considerable commercial interests.L-S membranesare generally prepared by phase inversion ...1 INTRODUCTIONSince the invention of asymmetric membrane by Loeb and Sourirajan [1],membraneseparation processes have attracted considerable commercial interests.L-S membranesare generally prepared by phase inversion techniques [2].The thermodynamic and kine-tic analyses of these processes could be expressed by means of semiempiricalmathematical models.Such thermodynamic work involves the construction of a com-plete phase diagram for the membrane formation system and the membrane structure.展开更多
Preliminary sink-float experiments on high-sulfur coal was done in some mining areas and carried on elementary analysis, industrial analysis, and ashcontent analysis. Through the experiments, definite middlings, and g...Preliminary sink-float experiments on high-sulfur coal was done in some mining areas and carried on elementary analysis, industrial analysis, and ashcontent analysis. Through the experiments, definite middlings, and gangue, the phase analysis of sulfur was carried on, by which a good understanding of sulfur characters in raw coal was achieved.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52072327,62074052,61874159)Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)+6 种基金Higher Education and Teaching Reformation Project(2014SJGLX064)Academic Degrees&Graduate Education Reform Project of Henan Province(2021SJGLX060Y)Key research and development projects of Universities in Henan Province(20A140026)the Scientific Research Innovation Team of Xuchang University(2022CXTD008)Science and Technology Project of Henan Province(222102230009).L.Ding thanks the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Natural Science Foundation of China(21961160720).
文摘Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness,high element abundance,and low cost.Here,we developed a strategy of one-step gas-solid-phase diffusioninduced reaction to fabricate a series of bandgap-tunable Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI bilayer films due to the atomic diffusion effect for the first time.By designing and regulating the sputtered Cu/Ag/Bi metal film thickness,the bandgap of Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI could be reduced from 2.06 to 1.78 eV.Solar cells with the structure of FTO/TiO_(2)/Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI/carbon were constructed,yielding a champion power conversion efficiency of 2.76%,which is the highest reported for this class of materials owing to the bandgap reduction and the peculiar bilayer structure.The current work provides a practical path for developing the next generation of efficient,stable,and environmentally friendly photovoltaic materials.
基金Project(20971041) supported by the National Natural Science Foundation of ChinaProject(09B032) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.
基金Science and Technology on Electronic Test and Measurement Laboratory(No.9140C12040515X)
文摘The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.
文摘A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed.
文摘Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.
基金supported by the National Natural Science Foundation of China(52003121,2220081350)the China Postdoctoral Science Foundation(2020M671497,2020T130300)
文摘The burgeoning field of photocatalytic reduction of CO_(2)has emerged as a remarkable promising solution to address some of the most pressing global energy and environmental issues which we face today.Researchers around the global have been striving to augment the efficiency of CO_(2)photocatalytic reduction,employing strategies that range from modifying the fundamental properties of photocatalysts to suppress the electron-hole recombination,optimizing reaction conditions to achieve the highest yield,and conceptualizing and constructing photoreactors to improve the adsorption process.Among these factors,the photoreactor plays a critical role in enhancing the overall photocatalytic efficiency.Understanding the various types of photoreactors and their operational dynamic can significantly influence the experimental design,thus guiding the data collecting and analysis.Compared to the solid-liquid phase,gas-solid phase photocatalytic reduction of CO_(2)is gaining recognition for its potential advantages,such as rapid molecular diffusion rates,adjustable CO_(2)concentrations,and uniform and sufficient light exposure.Nonetheless,the currently reported gas-solid phase photoreactors are still in their infancy.In this review,we dissect the underlying mechanism of photocatalytic CO_(2)reduction and the performance evaluation criteria of photoreactors,and review the development process of gas-solid phase photoreactors.Furthermore,we explore the evolution of gas-solid phase photoreactors,elucidating their growth trajectory and future possibilities.We present a comprehensive classification of gas-solid phase photoreactors,offering a new insight into their design and functionality,summarizing their strengths and inevitable limitations.Finally,we provide a forward-looking perspective on the future developmental prospects of carbon neutrality.
基金Contract No.200-2009-31933,awarded by the National Institute for Occupational Safety and Health(NIOSH)
文摘Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.
基金support provided by the National Natural Science Foundation of China(Granted No.21276276)
文摘The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins in the thioetherification process using fluidized catalytic cracking(FCC) naphtha as the feedstock was investigated. In order to disclose the correlation between the physicochemical characteristics of catalysts and their catalytic activity, the surface structures and properties of the catalysts sulfided at different temperatures were characterized by the high resolution transmission electronic microscopy(HRTEM), X-ray photoelectron spectroscopy(XPS) and H2-temperature programmed reduction(H_2-TPR) technique. The results showed that an increase of sulfurization temperature not only could promote the sulfurization degree of active metals on the catalysts, but also could adjust the micro-morphology of active species. These changes could improve the catalytic performance of thioetherification, and hydrogenation of dienes and olefins. However, an excess sulfurization temperature was more easily to upgrade the ability of the catalyst for hydrogenation of olefins, which could lead to a decrease of the octane number of the product. It was also showed that a moderate sulfurization temperature not only could improve the catalytic performance of thioetherification and hydrogenation of dienes but also could control hydrogenation of olefins.
文摘1 INTRODUCTIONSince the invention of asymmetric membrane by Loeb and Sourirajan [1],membraneseparation processes have attracted considerable commercial interests.L-S membranesare generally prepared by phase inversion techniques [2].The thermodynamic and kine-tic analyses of these processes could be expressed by means of semiempiricalmathematical models.Such thermodynamic work involves the construction of a com-plete phase diagram for the membrane formation system and the membrane structure.
文摘Preliminary sink-float experiments on high-sulfur coal was done in some mining areas and carried on elementary analysis, industrial analysis, and ashcontent analysis. Through the experiments, definite middlings, and gangue, the phase analysis of sulfur was carried on, by which a good understanding of sulfur characters in raw coal was achieved.