This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both p...This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected.展开更多
A bended ribbon biomass particle model was developed to explore the dynamic transport properties inside a riser reactor.Residence time distribution(RTD)of the particles was analyzed by using the Eulerian-Lagrange meth...A bended ribbon biomass particle model was developed to explore the dynamic transport properties inside a riser reactor.Residence time distribution(RTD)of the particles was analyzed by using the Eulerian-Lagrange method.The effects of sampling height,particle density,particle size and gas-to-solid mass ratio on RTD were investigated.The coupled Computational Fluid Dynamics and Discrete Element Method(CFD-DEM)model was verified firstly by experimental data on pressure drop and residence time distribution density function.The simulation results demonstrated that the ribbon biomass particles display a typical annular-core spatial distribution during transportation.The RTD of particles exhibit an approximate single-peaked normal distribution.The mean residence time(MRT)can reach up to 0.7 s when the particle density is 1200 kg/m^(3).Particle with higher density has longer mean residence time.The flow patterns are closer to plug flow if particle length over 12 mm.The particle flow pattern is not sensitive to changes in particle density and size,while the gas-to-material mass ratio has a significant impact on it.展开更多
Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold ...Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold circulating fluidized bed(CFB) riser. It is shown that in the horizontal direction,the average rotation speed in the near-wall area is larger than that in the center area,while in the vertical direction,it decreases as the height increases. The reason resulting in this distribution is analyzed by considering several factors including particle size,particle shape,particle number density,particle collision behavior,and the surrounding flow field,etc. The effects of CFB operation conditions on the spatial distribution of average rotation speed are also studied. The results show that the increasing superficial gas velocity increases the average rotation speed of particles in the near wall area but takes nearly no effect on that in the center area. The external solids mass flux,however,takes the opposite effect. It is found that the average rotation speeds of particles in both areas are increased as the total amount of bed material increases.展开更多
To design a particle solar receiver(PSR),a vital energy conversion system,is still a bottleneck for researchers.This study presents a novel PSR based on countercurrent fluidized bed(CCFB)technology,named CCFB receiver...To design a particle solar receiver(PSR),a vital energy conversion system,is still a bottleneck for researchers.This study presents a novel PSR based on countercurrent fluidized bed(CCFB)technology,named CCFB receiver.In this design,downward-moving particles are subjected to the action of an up-flow gas to reduce the falling speed and enhance the radial disturbance,and hence increase the residence time of particles and improve the heat transfer.A cold-mold visual experimental setup is established.The influence factors are investigated experimentally,including the superficial gas velocity,solid flux,aeration gas,particle size and transport tube diameter.The results indicate that the maximum solid holdup can exceed 9%or so with fine particles of diameter d_(p)=113.5 μm and a tube diameter of 40 mm.It is proved that the CCFB can operate stably and adjust the solid flux rapidly.The results of this study provide a new structure for PSRs in the concentrated solar power field and could fill the research insufficiency in the gas-solid counterflow field.展开更多
Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-struct...Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.展开更多
Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype ...Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype 60-mm-dia PMS was tested to track its freefall in terms of velocity and displacement, and served as a particle spy in a fluidized bed delivering the in situ acceleration information it detects. With increasing superficial gas velocity in the fluidized bed, the acceleration felt by PMS was observed to increase. The variance of the signals, which reflect the fluctuation, increased at first, reaching a maximum at the gas velocity (Uc) which marks the transition from bubbling to turbulent fluidization. Through probability density distribution (PDD) analysis, the PDD peak can be divided into the emulsion phase peak and the bubble phase peak. The average acceleration of emulsion and bubble phase increased, while the variance of both phases reached a maximum at Uc, at the same time. However, the difference between the variances of two phases reached the maximum at Uc. Findings of this study indicate that PMS can record independent in situ information. Further, it can provide other in situ measurements when equipped with additional multi-functional sensors.展开更多
文摘This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected.
基金support of the National Natural Science Foundation of China (grant No.51906092)China Tobacco Jiangxi Industrial Corporation Limited.
文摘A bended ribbon biomass particle model was developed to explore the dynamic transport properties inside a riser reactor.Residence time distribution(RTD)of the particles was analyzed by using the Eulerian-Lagrange method.The effects of sampling height,particle density,particle size and gas-to-solid mass ratio on RTD were investigated.The coupled Computational Fluid Dynamics and Discrete Element Method(CFD-DEM)model was verified firstly by experimental data on pressure drop and residence time distribution density function.The simulation results demonstrated that the ribbon biomass particles display a typical annular-core spatial distribution during transportation.The RTD of particles exhibit an approximate single-peaked normal distribution.The mean residence time(MRT)can reach up to 0.7 s when the particle density is 1200 kg/m^(3).Particle with higher density has longer mean residence time.The flow patterns are closer to plug flow if particle length over 12 mm.The particle flow pattern is not sensitive to changes in particle density and size,while the gas-to-material mass ratio has a significant impact on it.
基金the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAA03B01)the China Postdoctoral Science Foundation(No. 20070421165)
文摘Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold circulating fluidized bed(CFB) riser. It is shown that in the horizontal direction,the average rotation speed in the near-wall area is larger than that in the center area,while in the vertical direction,it decreases as the height increases. The reason resulting in this distribution is analyzed by considering several factors including particle size,particle shape,particle number density,particle collision behavior,and the surrounding flow field,etc. The effects of CFB operation conditions on the spatial distribution of average rotation speed are also studied. The results show that the increasing superficial gas velocity increases the average rotation speed of particles in the near wall area but takes nearly no effect on that in the center area. The external solids mass flux,however,takes the opposite effect. It is found that the average rotation speeds of particles in both areas are increased as the total amount of bed material increases.
基金financially supported by the National Natural Science Foundation of China(Grant No.:52130607,51821004).
文摘To design a particle solar receiver(PSR),a vital energy conversion system,is still a bottleneck for researchers.This study presents a novel PSR based on countercurrent fluidized bed(CCFB)technology,named CCFB receiver.In this design,downward-moving particles are subjected to the action of an up-flow gas to reduce the falling speed and enhance the radial disturbance,and hence increase the residence time of particles and improve the heat transfer.A cold-mold visual experimental setup is established.The influence factors are investigated experimentally,including the superficial gas velocity,solid flux,aeration gas,particle size and transport tube diameter.The results indicate that the maximum solid holdup can exceed 9%or so with fine particles of diameter d_(p)=113.5 μm and a tube diameter of 40 mm.It is proved that the CCFB can operate stably and adjust the solid flux rapidly.The results of this study provide a new structure for PSRs in the concentrated solar power field and could fill the research insufficiency in the gas-solid counterflow field.
文摘Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.
基金supported by the Foundation for Natural Scientific Foundation of China (No. 20606020, No. 20736004, No. 20736007)
文摘Based on three-dimensional (3D) acceleration sensing, an intelligent particle spy capable of detecting, transferring, and storing data, is proposed under the name of Particle Measurement Sensor (PMS). A prototype 60-mm-dia PMS was tested to track its freefall in terms of velocity and displacement, and served as a particle spy in a fluidized bed delivering the in situ acceleration information it detects. With increasing superficial gas velocity in the fluidized bed, the acceleration felt by PMS was observed to increase. The variance of the signals, which reflect the fluctuation, increased at first, reaching a maximum at the gas velocity (Uc) which marks the transition from bubbling to turbulent fluidization. Through probability density distribution (PDD) analysis, the PDD peak can be divided into the emulsion phase peak and the bubble phase peak. The average acceleration of emulsion and bubble phase increased, while the variance of both phases reached a maximum at Uc, at the same time. However, the difference between the variances of two phases reached the maximum at Uc. Findings of this study indicate that PMS can record independent in situ information. Further, it can provide other in situ measurements when equipped with additional multi-functional sensors.