期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
1
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
Near-source characteristics of two-phase gas-solid outbursts in roadways 被引量:1
2
作者 Aitao Zhou Meng Zhang +1 位作者 Kai Wang Derek Elsworth 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期685-696,共12页
Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and ... Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue. 展开更多
关键词 Coal and gas outburst Proximity to source Shock wave propagation two-phase gas-solid flow Outburst prevention
下载PDF
Numerical simulation of the gas-solid two-phase flow inside the multi-channel nozzle for the surface nanocrystallization induced by the ultrasonic particulate peening 被引量:1
3
作者 ZHANG Yujun,LIANG Yongli and ZHANG Junbao Advanced Technology Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第4期3-7,共5页
Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP)... Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP. 展开更多
关键词 USPP SNC multi-channel nozzle gas-solid two-phase flow numerical simulation
下载PDF
Particle modulations to turbulence in two-phase round jets 被引量:1
4
作者 Bing Wang Huiqiang Zhang Yi Liu Xiaofen Yan Xilin Wang School of Aerospace, Tsinghua University, 100084 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期611-617,共7页
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant atten... The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the farfields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop- erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity. 展开更多
关键词 Particle modulations Turbulence intensity Particle sizes two-phase slip velocity Particle-laden round turbulent jet
下载PDF
Numerical Simulation of the Gas-solid Two-phase Flows in a Precalciner 被引量:1
5
作者 王家楣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期177-179,共3页
The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of th... The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of the different multiphase models were analyzed and compared.showing the rationality of the diffusion and mixture of the cenment raic meals and coal poroder some extent Moreover,the results also shose the rationality of the given inlets parameters of actual process of the precalciner. 展开更多
关键词 preculciner gas-solid two-phase flow mumerical simulation
下载PDF
PREDICTIONS OF 3-D STRONGLY SWIRLING GAS-SOLID TWO-PHASE FLOW WITH GAS COMBUSTION
6
作者 王振宇 还博文 《Journal of Shanghai Jiaotong university(Science)》 EI 1998年第1期59-63,共5页
PREDICTIONSOF3┐DSTRONGLYSWIRLINGGAS┐SOLIDTWO┐PHASEFLOWWITHGASCOMBUSTIONWangZhenyu(王振宇)(ShanghaiWujingThermal... PREDICTIONSOF3┐DSTRONGLYSWIRLINGGAS┐SOLIDTWO┐PHASEFLOWWITHGASCOMBUSTIONWangZhenyu(王振宇)(ShanghaiWujingThermalPowerPlant)HuanBo... 展开更多
关键词 王振宇 STRONGLY SWIRLING two-phase OF PREDICTIONS FLOW WITH COMBUSTION gas-solid
下载PDF
NUMERICAL MODELING OF TURBULENTEVAPORATING GAS-DROPLET TWO-PHASE FLOWS IN AN AFTERBURNER DIFFUSOR OF TURBO-FAN JET ENGINES
7
作者 Zhou Lixing and Zhang JianTsinghua University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期258-265,共8页
The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of pre... The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows pretty good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbo-fan jet engines. 展开更多
关键词 NUMERICAL MODELING OF TURBULENTEVAPORATING GAS-DROPLET two-phase FLOWS IN AN AFTERBURNER DIFFUSOR OF TURBO-FAN jet ENGINES jet GAS
下载PDF
A Numerical Sirnulation of Gas-Particle Two-Phase Flow in a Suspension Bed Using DifFusion Flux Model 被引量:1
8
作者 尚智 杨瑞昌 +2 位作者 FUKUDA Kenji 钟勇 巨泽建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期497-503,共7页
A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed... A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow. 展开更多
关键词 diffusion flux model gas-solid two-phase flow turbulent flow numerical simulation
下载PDF
Deduction and Validation of an Eulerian-Eulerian Model for Turbulent Dilute Two-Phase Flows by Means of the Phase Indicator Function-Disperse Elements Probability Density Function
9
作者 Santiago Laín Ricardo Aliod 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第3期189-202,共14页
A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase ... A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows. It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced. An extension of the standard k-e turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity. 展开更多
关键词 two-phase flow turbulence phase indicator function pdf ensemble average jet
下载PDF
Effects of the nozzle structure and fluidized gas composition on the gas-particle two-phase jet characteristic in a powder fuel scramjet
10
作者 Changfei Zhuo Hongming Ding +2 位作者 Xiaobin Ren Hanyu Deng Xiong Chen 《Particuology》 SCIE EI CAS CSCD 2024年第9期166-179,共14页
The interaction between nozzle design and fluidization gas composition significantly influences the dynamics within a powder fuel scramjet's combustion chamber.To investigate this relationship,an experimental stud... The interaction between nozzle design and fluidization gas composition significantly influences the dynamics within a powder fuel scramjet's combustion chamber.To investigate this relationship,an experimental study utilized high-speed shadow imaging technology to explore the macroscopic aspects of powder fuel injection.The investigation examined various convergence angles,nozzle throat lengths,and fluidized gas compositions.Key findings include:During jet development,powder fuel initially concentrates near the axis,with non-convergence angle nozzles exhibiting longer concentrated distribution periods than convergence angle conditions.Decreasing nozzle convergence angles lead to increased penetration distance,frontal velocity,and radial diffusion distance during the initial stages of jet development.Additionally,stable jet shapes show larger divergence angles as nozzle convergence angle decreases,with the largest divergence angle observed atα=60°.In the initial 0-7 ms of jet development,the powder fuel jet demonstrates greater penetration distance and frontal velocity under certain conditions.Moreover,penetration distance and frontal velocity increase with throat length from 7 to 20 ms,accompanied by changes in divergence angles.Specifically,at a throat length(l)of 2 mm,the near-field divergence angle measures 46.50°,and the far-field divergence angle is 22.25°.Conversely,at l=8mm,the near-field divergence angle is 33.49°,and the far-field divergence angle is 23.21°.The fluidization gas composition minimally affects jet penetration distance and frontal velocity during the initial 0-3 ms.However,due to hydrogen's low density,hydrogen/powder fuel jets exhibit shorter distances and velocities compared to nitrogen/powder fuel jets.Hydrogen fluidization also results in larger divergence angles,particularly in the near field.These findings underscore the importance of nozzle design and fluidization gas composition in optimizing scramjet performance and efficiency. 展开更多
关键词 Multiphase flows Gas-particle two-phase jet Nozzle contraction angle Powder fuel scramjet
原文传递
LBE-DEM coupled simulation of gas-solid two-phase cross jets 被引量:6
11
作者 GUI Nan XU WenKai +1 位作者 GE Liang YAN Jie 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第6期1377-1386,共10页
This paper establishes a lattice Boltzmann equation-discrete element method (LBE-DEM) coupled simulation method under the Eulerian-Lagrangian framework at first, and applies it to simulating a two-dimensional gas-soli... This paper establishes a lattice Boltzmann equation-discrete element method (LBE-DEM) coupled simulation method under the Eulerian-Lagrangian framework at first, and applies it to simulating a two-dimensional gas-solid two-phase cross jet. The gas phase is simulated by the lattice-Boltzmann method via the TD2G9 model; the solid phase is traced by the Lagrangian method and the inter-particle collision is calculated by the DEM method. Three values of the Stokes number St=10, 25, and 50 are simulated under the same mass loading. This paper focuses on the characteristics of vortex structure, particle distribution, and the reverse-flow/rebounding rate in cross jets. We analyze the characteristics of fluid vortex motion, particle cluster distribution, rebounding rate of particles and the influencing factors for them. The results show the existence of joint distribution of discrete clusters and discrete particles in cross jets. Meanwhile, it shows that a larger concentration of particles in the early stage of jet evolution or a smaller Stokes number under the same mass loading can produce a larger rebounding rate. However, the rebounding rate of particles at the late stage, in general, is stable. 展开更多
关键词 gas-solid flow cross jet lattice Boltzmann discrete element method inter-particle collision
原文传递
Critical Stokes Number for Gas-Solid Flow Erosion of Wind Turbine Airfoil 被引量:3
12
作者 Li Deshun Gong Yuxiang +2 位作者 Li Rennian Li Yinran Ma Ruijie 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期67-72,共6页
Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is... Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is first investigated.When the sand diameter is less than 3μm,the sands will bypass the airfoil and no erosion occurs.When the sand diameter is larger than 4μm,the sand grains collide with the airfoil and the erosion happens.Thus,there must be a critical sand diameter between 3μm and 4μm,at which the erosion is initiated on the airfoil surface.To find out this critical value,aparticle Stokes number is introduced here.According to the range of the critical sand diameter mentioned above,the critical value of particle Stokes number is reasonably assumed to be between 0.007 8and 0.014.The assumption is subsequently validated by other four factors influecing the erosion,i.e.,the angle of attack,relative thickness of the airfoil,different series airfoil,and inflow velocity.Therefore,the critical range of Stokes number has been confirmed. 展开更多
关键词 wind turbine airfoil erosion critical Stokes number gas-solid two-phase flow
下载PDF
Large-eddy Simulation of Bubble-Liquid Confined Jets 被引量:2
13
作者 杨玟 周力行 L.S.Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第4期381-384,共4页
The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid... The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid flow and bubble motion,the shear-generated and bubble-induced liquid turbulence,and indicate much stronger bubble fluctuation than that of the liquid,the enhancement of liquid turbulence by bubbles.Both shear and bubble-liquid interaction are important for the liquid turbulence generation in the case studied. 展开更多
关键词 large-eddy simulation bubble-liquid flow two-phase jet
下载PDF
PARALLEL ADAPTIVE SIMULATION OF A PLUNGING LIQUID JET 被引量:2
14
作者 Azat Yu.Galimov Onkar Sahni +3 位作者 Richard T.Lahey Jr. Mark S.Shephard Donald A.Drew Kenneth E.Jansen 《Acta Mathematica Scientia》 SCIE CSCD 2010年第2期522-538,共17页
This paper is concerned with three-dimensional numerical simulation of a plunging liquid jet. The transient processes of forming an air cavity around the jet, capturing an initially large air bubble, and the break-up ... This paper is concerned with three-dimensional numerical simulation of a plunging liquid jet. The transient processes of forming an air cavity around the jet, capturing an initially large air bubble, and the break-up of this large toroidal-shaped bubble into smaller bubbles were analyzed. A stabilized finite element method (FEM) was employed under parallel numerical simulations based on adaptive, unstructured grid and coupled with a level-set method to track the interface between air and liquid. These simulations show that the inertia of the liquid jet initially depresses the pool's surface, forming an annular air cavity which surrounds the liquid jet. A toroidal liquid eddy which is subse- quently formed in the liquid pool results in air cavity collapse, and in turn entrains air into the liquid pool from the unstable annular air gap region around the liquid jet. 展开更多
关键词 plunging liquid jet air entrainment two-phase flows level set method parallel adaptive simulation
下载PDF
Numerical simulation of slurry jets using mixture model 被引量:1
15
作者 Wen-xin HUAI Wan-yun XUE Zhong-dong QIAN 《Water Science and Engineering》 EI CAS CSCD 2013年第1期78-90,共13页
Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equation... Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large), the turbulent kinetic energy k and turbulent dissipation rate e, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the panicle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction. 展开更多
关键词 slurry jet numerical simulation two-phase mixture model Stokes number "flow-particle interaction
下载PDF
Large eddy simulation of a particle—laden turbulent plane jet
16
作者 金含辉 罗坤 +1 位作者 樊建人 岑可法 《Journal of Zhejiang University Science》 EI CSCD 2003年第2期175-180,共6页
Gas solid two-phase turbulent plane jet is applied to many natural s it uations and in engineering systems. To predict the particle dispersion in the ga s jet is of great importance in industrial applications and in ... Gas solid two-phase turbulent plane jet is applied to many natural s it uations and in engineering systems. To predict the particle dispersion in the ga s jet is of great importance in industrial applications and in the designing of engineering systems. A large eddy simulation of the two-phase plane jet was con d ucted to investigate the particle dispersion patterns. The particles with Stokes numbers equal to 0 0028, 0 3, 2 5, 28 (corresponding to particle diameter 1 μm , 10 μm, 30 μm, 100 μm, respectively) in \%Re\%=11 300 gas flow were studied. The simulation results of gas phase motion agreed well with previous experimental re sults. And the simulation results of the solid particles motion showed that part icles with different Stokes number have different spatial dispersion; and that p articles with intermediate Stokes number have the largest dispersion ratio. 展开更多
关键词 Large eddy simulation Particle dispersion gas-solid two-phase plane jet
下载PDF
CFD Simulation of Dilute Gas-Solid Flow in 90<sup>o</sup>Square Bend
17
作者 T. A. Mikhail Walid A. Aissa +1 位作者 S. A. Hassanein O. Hamdy 《Energy and Power Engineering》 2011年第3期246-252,共7页
Gas-solid two-phase flow in a 90? bend has been studied numerically. The bend geometry is squared cross section of (0.15 m × 0.15 m) and has a turning radius of 1.5 times the duct's hydraulic diameter. The so... Gas-solid two-phase flow in a 90? bend has been studied numerically. The bend geometry is squared cross section of (0.15 m × 0.15 m) and has a turning radius of 1.5 times the duct's hydraulic diameter. The solid phase consists of glass spheres having mean diameter of 77 μm and the spheres are simulated with an air flowing at bulk velocity of 10 m/s. A computational fluid dynamic code (CFX-TASCflow) has been adopted for the simulation of the flow field inside the piping and for the simulation of the particle trajectories. Simulation was performed using Lagrangian particle-tracking model, taking into account one-way coupling, combined with a particle-wall collision model. Turbulence was predicted using k-ε model, wherein additional transport equations are solved to account for the combined gas-particle interactions and turbulence kinetic energy of the particle phase turbulence. The computational results are compared with the experimental data present in the literature and they were found to yield good agreement with the measured values. 展开更多
关键词 gas-solid two-phase FLOW DILUTE 90oBend CFX
下载PDF
Gas-solid flow field numerical simulation of different feeding and returning formations of flue-gas circulating fluidized bed
18
作者 WANG Hu 《Journal of Coal Science & Engineering(China)》 2012年第4期407-412,共6页
3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods o... 3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods of the feedstocks and reverts in recirculating fluidized bed, described the behavior of gas and solid through the gas-phase velocity, turbulence intensity, gas-solid sliding velocity, and density of particles. The results show that the feedstocks and reverts enters into absorption tower through two symmetrical feedings and are mixed with flue gas. Based on the respective analysis of each model and the com- parison analysis of the three models, this paper drew conclusions. The turbulence intensity of absorption tower is high, gas-solid sliding speed is big, and granule concentration near the axis is high, which has advantages for desulfurization and im- proving the utilization rate of absorbent. 展开更多
关键词 flue-gas desulfurization feedstocks and reverts gas-solid two-phase flow numerical simulation
下载PDF
Mixing effects of high-speed jets in gas-solid riser and downer reactors
19
作者 Zihan Yan Dongdong Wang +1 位作者 Lining Wu Chunxi Lu 《Particuology》 SCIE EI CAS CSCD 2024年第9期196-209,共14页
For the high-temperature and short-contact time gas-solid reaction process,riser and downer are considered appropriate reactors.To realize an intensive and complete mixing of reactants with catalysts,the feed raw is a... For the high-temperature and short-contact time gas-solid reaction process,riser and downer are considered appropriate reactors.To realize an intensive and complete mixing of reactants with catalysts,the feed raw is always introduced in the form of high-speed jets.In this study,in order to investigate the mixing effects of different types of high-speed jets in riser and downer,traceable ozone is injected with the high-speed feed jets to react with catalyst particles.By detecting the decomposition of ozone,the gas-solid mixing and reaction in riser and downer under the influence of both co-current and counter-current injections are analyzed.The relative ozone concentration is used to reflect the location reaction extent and its radial nonuniformity index is proposed to compare the results in riser and downer.It is found that the jet influence zone in downer provides a relatively better environment for the mixing of feed jets with catalysts.In the riser,introduction of counter-current injections could improve the uniformity of gas-solid mixing in the initial contact region of feed with catalysts. 展开更多
关键词 RISER DOWNER gas-solid two-phase flow jet
原文传递
Transportation characteristics of gas-solid two-phase flow in a long-distance pipeline 被引量:5
20
作者 Xiaoqiang Zhang Dongfeng Zhang +1 位作者 An Wang Yide Geng 《Particuology》 SCIE EI CAS CSCD 2015年第4期196-202,共7页
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to... In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow. The experimen- tal results indicated that solids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss, These experimental results provide important reference data for the development of pneumatic conveying technology. 展开更多
关键词 Pneumatic conveying Electrical capacitance tomography Fly ash gas-solid two-phase flow Solid concentration
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部