Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l...Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.展开更多
A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different inject...A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.展开更多
The effects of different flow forms on an opposed-piston two-stroke(OPTS)gasoline-directinjection(GDI)engine was studied by analyzing the mixture formation and combustion.Swirl was broken and dissipated gradually ...The effects of different flow forms on an opposed-piston two-stroke(OPTS)gasoline-directinjection(GDI)engine was studied by analyzing the mixture formation and combustion.Swirl was broken and dissipated gradually and the turbulence kinetic energy(TKE)was small in the compression process;however,tumble was strengthened and the TKE was strong in the compression process.For swirl around X axis(the axis of cylinder)and tumble around Y axis(the vertical direction of injector),droplets were attached to the cylinder liner by the centrifugal force and the mixture distribution was poor.For tumble around Zaxis(the direction of injector),the wall film in cylinder liner was thin and mixture distribution was homogeneous.Results showed that since the injector were installed on the wall of the cylinder liner in the OPTS-GDI engine,the spray angle was small and the mixture formation time was short.The 45° oblique axis tumble ratio of 1 was reasonable for the mixture formation and combustion for an OPTS-GDI engine.展开更多
To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which ...To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which conducts the simulation to be a cost-effective tool in MIM technology. In case of the bi-phasic simulation, the viscosity behaviours are necessary to be determined for the flows of each phase while only the viscosity of mixture is measurable by tests. It is a crucial problem for application of the bi-phasic simulation of MIM injection. A reasonable method is hence analysed and proposed to determine the viscosity behaviours of each phase. Even though this method may be furthermore modified in the future, it results in the practical simulation of segregation effects with reasonable parameters. The simulation results are compared with the measurements on injected specimens.展开更多
托卡马克等离子体破裂会产生逃逸电流,如不进行抑制,其携带的巨大能量将对设备造成严重破坏。本文使用DREAM程序中的流体模型,基于中国环流器二号M(HL-2M)托卡马克装置大等离子体电流放电条件,研究注入氘氩/氖混合气体对破裂逃逸电流的...托卡马克等离子体破裂会产生逃逸电流,如不进行抑制,其携带的巨大能量将对设备造成严重破坏。本文使用DREAM程序中的流体模型,基于中国环流器二号M(HL-2M)托卡马克装置大等离子体电流放电条件,研究注入氘氩/氖混合气体对破裂逃逸电流的影响。研究表明:注入氘氩/氖混合气体可以抑制最终形成的平台逃逸电流。在讨论的破裂前等离子体电流I_(p)范围内,最优条件下氩/氖在混合气体中的含量应在0.50%~0.70%,氘的注入量应在10^(20)~10^(21)m^(-3)。在这个范围外,氘氩/氖混合气体注入对逃逸电流的抑制效果都会减弱,甚至会增大逃逸电流。破裂前等离子体电流I_(p)是影响逃逸电流的关键因素。I_(p)越大,形成的逃逸电流越大,也需要注入更多的混合气体。在I_(p)高达10 MA的聚变堆级托卡马克装置上,注入混合气体的密度需要达到10^(22)m^(-3),这是目前大量气体注入(Massive Gas Injection,MGI)技术所不能达到的,通过散裂弹丸注入氘氩/氖混合物将是更加可行的方式。展开更多
Chemical non-equilibrium flow was investigated for the scramjet single expansion ramp nozzle(SERN)with a strut-based liquid-kerosene-fueled combustor.Two-dimensional Reynolds-averaged NavierStokes(RANS)equations were ...Chemical non-equilibrium flow was investigated for the scramjet single expansion ramp nozzle(SERN)with a strut-based liquid-kerosene-fueled combustor.Two-dimensional Reynolds-averaged NavierStokes(RANS)equations were solved with the species conservation equation for continuous phase and the renormalization group(RNG)k-εturbulence model.Lagrangian discrete-phase model was analyzed for liquidkerosene droplets behavior in the supersonic stream.Combustion was simulated by kerosene surrogate fuel's10-species and 13-step reduced reaction kinetics mechanism with use of Arrhenius's laminar finite rate model.Parametric studies were carried out to estimate the influence of different fuel injection positions and equivalent mixture ratios on the SERN chemical non-equilibrium effects.Numerical calculation results show that the strutbased combustor enables convenient modeling of various SERN entry conditions,which is similar with many preceding investigations,by changing the injector strut position and controlling the mass flow rate of each injector.Chemical non-equilibrium effects function in the whole SERN,especially in the initial flow expansion region,leads to obviously higher SERN performance of the non-equilibrium flow than that of the frozen flow.Furthermore,the distributed fuel injection pattern plays a significant role in enhancing the combustion efficiency in combustor,but weakening the chemical non-equilibrium effects funciton in SERN.Additionally,while the equivalent mixture ratio increases,the SERN thrust coefficient and lift coefficient rise gradually,and the increment of non-equilibrium flow in relation to frozen flow becomes higher as well.To be specific,the equivalent mixture ratio is 0.6,the maximum increment of thrust coefficient and lift coefficient are 11.6% and 25% respectively.展开更多
基金funding by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE project).
文摘Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.
基金Supported by National High Technology Research and Development Program ("863" Program) of China (No.2008AA11A114)
文摘A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.
基金Supported by the National Natural Science Foundation of China(B2220110005)
文摘The effects of different flow forms on an opposed-piston two-stroke(OPTS)gasoline-directinjection(GDI)engine was studied by analyzing the mixture formation and combustion.Swirl was broken and dissipated gradually and the turbulence kinetic energy(TKE)was small in the compression process;however,tumble was strengthened and the TKE was strong in the compression process.For swirl around X axis(the axis of cylinder)and tumble around Y axis(the vertical direction of injector),droplets were attached to the cylinder liner by the centrifugal force and the mixture distribution was poor.For tumble around Zaxis(the direction of injector),the wall film in cylinder liner was thin and mixture distribution was homogeneous.Results showed that since the injector were installed on the wall of the cylinder liner in the OPTS-GDI engine,the spray angle was small and the mixture formation time was short.The 45° oblique axis tumble ratio of 1 was reasonable for the mixture formation and combustion for an OPTS-GDI engine.
文摘To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which conducts the simulation to be a cost-effective tool in MIM technology. In case of the bi-phasic simulation, the viscosity behaviours are necessary to be determined for the flows of each phase while only the viscosity of mixture is measurable by tests. It is a crucial problem for application of the bi-phasic simulation of MIM injection. A reasonable method is hence analysed and proposed to determine the viscosity behaviours of each phase. Even though this method may be furthermore modified in the future, it results in the practical simulation of segregation effects with reasonable parameters. The simulation results are compared with the measurements on injected specimens.
文摘托卡马克等离子体破裂会产生逃逸电流,如不进行抑制,其携带的巨大能量将对设备造成严重破坏。本文使用DREAM程序中的流体模型,基于中国环流器二号M(HL-2M)托卡马克装置大等离子体电流放电条件,研究注入氘氩/氖混合气体对破裂逃逸电流的影响。研究表明:注入氘氩/氖混合气体可以抑制最终形成的平台逃逸电流。在讨论的破裂前等离子体电流I_(p)范围内,最优条件下氩/氖在混合气体中的含量应在0.50%~0.70%,氘的注入量应在10^(20)~10^(21)m^(-3)。在这个范围外,氘氩/氖混合气体注入对逃逸电流的抑制效果都会减弱,甚至会增大逃逸电流。破裂前等离子体电流I_(p)是影响逃逸电流的关键因素。I_(p)越大,形成的逃逸电流越大,也需要注入更多的混合气体。在I_(p)高达10 MA的聚变堆级托卡马克装置上,注入混合气体的密度需要达到10^(22)m^(-3),这是目前大量气体注入(Massive Gas Injection,MGI)技术所不能达到的,通过散裂弹丸注入氘氩/氖混合物将是更加可行的方式。
文摘Chemical non-equilibrium flow was investigated for the scramjet single expansion ramp nozzle(SERN)with a strut-based liquid-kerosene-fueled combustor.Two-dimensional Reynolds-averaged NavierStokes(RANS)equations were solved with the species conservation equation for continuous phase and the renormalization group(RNG)k-εturbulence model.Lagrangian discrete-phase model was analyzed for liquidkerosene droplets behavior in the supersonic stream.Combustion was simulated by kerosene surrogate fuel's10-species and 13-step reduced reaction kinetics mechanism with use of Arrhenius's laminar finite rate model.Parametric studies were carried out to estimate the influence of different fuel injection positions and equivalent mixture ratios on the SERN chemical non-equilibrium effects.Numerical calculation results show that the strutbased combustor enables convenient modeling of various SERN entry conditions,which is similar with many preceding investigations,by changing the injector strut position and controlling the mass flow rate of each injector.Chemical non-equilibrium effects function in the whole SERN,especially in the initial flow expansion region,leads to obviously higher SERN performance of the non-equilibrium flow than that of the frozen flow.Furthermore,the distributed fuel injection pattern plays a significant role in enhancing the combustion efficiency in combustor,but weakening the chemical non-equilibrium effects funciton in SERN.Additionally,while the equivalent mixture ratio increases,the SERN thrust coefficient and lift coefficient rise gradually,and the increment of non-equilibrium flow in relation to frozen flow becomes higher as well.To be specific,the equivalent mixture ratio is 0.6,the maximum increment of thrust coefficient and lift coefficient are 11.6% and 25% respectively.