In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordina...In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.展开更多
Objective To observe the clinical effects of acupuncture method of'Huoxue Sanfeng,Shugan Jianpi'(activating blood and eliminating wind,soothing liver and strengthening spleen)on morning blood pressure in patie...Objective To observe the clinical effects of acupuncture method of'Huoxue Sanfeng,Shugan Jianpi'(activating blood and eliminating wind,soothing liver and strengthening spleen)on morning blood pressure in patients with cerebral infarction combined with essential hypertension.Methods Sixty-eight patients were randomly divided into an observation group and a control group,34 cases in each one.The patients in the展开更多
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
基金Supported by the National Key Laboratory Foundation Project(9140C3403010903)
文摘In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.
文摘Objective To observe the clinical effects of acupuncture method of'Huoxue Sanfeng,Shugan Jianpi'(activating blood and eliminating wind,soothing liver and strengthening spleen)on morning blood pressure in patients with cerebral infarction combined with essential hypertension.Methods Sixty-eight patients were randomly divided into an observation group and a control group,34 cases in each one.The patients in the
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.