Besides ozone, oxygen and water vapour should be considered for their absorptive effects on "HY--1A" CZI data processing. First ,gaseous transmittances under various conditions are computed and analyzed for the band...Besides ozone, oxygen and water vapour should be considered for their absorptive effects on "HY--1A" CZI data processing. First ,gaseous transmittances under various conditions are computed and analyzed for the band settings of this sensor. Second, transmittances under six standard atmospheres are approximated as functions of zenith angle, the water vapour transmittance is approximated as a function of water vapour content and zenith angle, and the ozone transmittance is approximated as a function of ozone content and zenith angle. Finally, taking Rayleigh scattering as an example, the influence of ignoring gaseous absorption when calculating TOA reflectance is analyzed, and the effect of applying the presented transmittance approximations to gaseous absorption correction for Rayleigh scattering in "HY--1A" CZI data processing is evaluated.展开更多
The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persul...The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed.展开更多
This work proposed to use the ionic liquid [EMIM][BF_4] as absorbent for the absorption of gaseous acetic acid. The feasibility of this technology was investigated from molecular level to industrial scale. The acetic ...This work proposed to use the ionic liquid [EMIM][BF_4] as absorbent for the absorption of gaseous acetic acid. The feasibility of this technology was investigated from molecular level to industrial scale. The acetic acid absorption experiment was carried out using [EMIM][BF_4],and the removal ratio of acetic acid in the gas product can achieve 88.6% at 20C under atmospheric pressure at the laboratory scale. Based on the experimental results, a reliable strict equilibrium phase model embedding the parameters of the UNIFAC model was established. On this basis, the conceptual process design and optimization of acetic acid removal by [EMIM][BF_4] at an industrial scale was done, and the most suitable design and operation parameters were obtained. For a further step, the binding energy between [EMIM][BF_4] and acetic acid was calculated to give some insights into the separation mechanism, and the results indicate that the interaction between acetic acid and IL is much stronger than that between nitrogen and IL. Moreover, hydrogen bond can be formed between the cation-acetic acid as well as the anion-acetic acid.展开更多
For acoustic applications such as theaters, cinema halls, auditoriums the data on acoustic properties i.e. sound absorption coefficient and sound transmission loss are required to evaluate the acoustic behavior of pan...For acoustic applications such as theaters, cinema halls, auditoriums the data on acoustic properties i.e. sound absorption coefficient and sound transmission loss are required to evaluate the acoustic behavior of panel products and to facilitate the necessary design computations. Fibre boards are widely used in private and commercial buildings, but not much data are available on acoustic efficiency of fibre boards. The study was carried using acoustic pulse tester based on standing wave method for evaluating sound absorption coefficient. Wood fibre boards of different densities ranging from 200 to 800 kg/m3 were taken and their sound absorption coefficients at frequencies ranging from 125 Hz to 4000 Hz were evaluated in third octave band. Noise reduction coefficient of the samples was also computed. From the study, it is observed that low density fibre board possess high sound absorption coefficient and noise reduction coefficient when compared with high density fibre boards. It was seen that sound absorption coefficient increases with decrease in density and vice versa.展开更多
Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various...Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.展开更多
基金The National Natural Science Foundation of China under contralt No. 40606043the "863"Program under contract No.2007AA12Z145.
文摘Besides ozone, oxygen and water vapour should be considered for their absorptive effects on "HY--1A" CZI data processing. First ,gaseous transmittances under various conditions are computed and analyzed for the band settings of this sensor. Second, transmittances under six standard atmospheres are approximated as functions of zenith angle, the water vapour transmittance is approximated as a function of water vapour content and zenith angle, and the ozone transmittance is approximated as a function of ozone content and zenith angle. Finally, taking Rayleigh scattering as an example, the influence of ignoring gaseous absorption when calculating TOA reflectance is analyzed, and the effect of applying the presented transmittance approximations to gaseous absorption correction for Rayleigh scattering in "HY--1A" CZI data processing is evaluated.
基金Project (No. 20476094) supported by the National Natural ScienceFoundation of China
文摘The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed.
基金financially supported by the National Natural Science Foundation of China(No.U1862103)
文摘This work proposed to use the ionic liquid [EMIM][BF_4] as absorbent for the absorption of gaseous acetic acid. The feasibility of this technology was investigated from molecular level to industrial scale. The acetic acid absorption experiment was carried out using [EMIM][BF_4],and the removal ratio of acetic acid in the gas product can achieve 88.6% at 20C under atmospheric pressure at the laboratory scale. Based on the experimental results, a reliable strict equilibrium phase model embedding the parameters of the UNIFAC model was established. On this basis, the conceptual process design and optimization of acetic acid removal by [EMIM][BF_4] at an industrial scale was done, and the most suitable design and operation parameters were obtained. For a further step, the binding energy between [EMIM][BF_4] and acetic acid was calculated to give some insights into the separation mechanism, and the results indicate that the interaction between acetic acid and IL is much stronger than that between nitrogen and IL. Moreover, hydrogen bond can be formed between the cation-acetic acid as well as the anion-acetic acid.
文摘For acoustic applications such as theaters, cinema halls, auditoriums the data on acoustic properties i.e. sound absorption coefficient and sound transmission loss are required to evaluate the acoustic behavior of panel products and to facilitate the necessary design computations. Fibre boards are widely used in private and commercial buildings, but not much data are available on acoustic efficiency of fibre boards. The study was carried using acoustic pulse tester based on standing wave method for evaluating sound absorption coefficient. Wood fibre boards of different densities ranging from 200 to 800 kg/m3 were taken and their sound absorption coefficients at frequencies ranging from 125 Hz to 4000 Hz were evaluated in third octave band. Noise reduction coefficient of the samples was also computed. From the study, it is observed that low density fibre board possess high sound absorption coefficient and noise reduction coefficient when compared with high density fibre boards. It was seen that sound absorption coefficient increases with decrease in density and vice versa.
文摘Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.