期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Life Cycle Cost of Electricity Generation from Biomass Gasifier 被引量:5
1
作者 Debabrata Lahiri Gokul Achariee 《Journal of Energy and Power Engineering》 2013年第11期2060-2067,共8页
India is having more than 500,000 villages of which about 85% have been electrified. But as per RGGVY (Rejiv Gandhi Grammen Vidyutikaran Yojana), the rate of village electrification is much lower as household connec... India is having more than 500,000 villages of which about 85% have been electrified. But as per RGGVY (Rejiv Gandhi Grammen Vidyutikaran Yojana), the rate of village electrification is much lower as household connectivity has been fairly low. The rest 15% villages and a larger proportion of households have to be electrified. Villages have been a major concern as cost of electrification is fairly high. The most favored alternative to any kind of users is generation of electricity from diesel generating sets and renewable sources of energy. But the capital cost of renewable energy equipments is fairly high. Gradually, there is a reduction in the prices of these systems due to availability of better technological options and they are becoming competitive to grid electricity. In this paper, an attempt has been made to calculate the cost of production of electricity from stand-alone, off-grid devices biomass gasifiers (both dual fuel and pure gas type) and compare with that of diesel generating sets by using the concept of LCC (life cycle costing) and Homer software. It is found that the cost of per unit electricity generation (kWh) has been always the lowest in comparison to diesel generating sets even if the price of biomass increases to some extent. 展开更多
关键词 biomass gasifier DIESEL OFF-GRID life cycle costing.
下载PDF
High-density circulating fluidized bed gasifier for advanced IGCC/IGFC-Advantages and challenges 被引量:20
2
作者 Guoqing Guan Chihiro Fushimi +4 位作者 Atsushi Tsutsumi Masanori Ishizuka Satoru Matsuda Hiroyuki Hatano Yoshizo Suzuki 《Particuology》 SCIE EI CAS CSCD 2010年第6期602-606,共5页
Coal-fired Integrated Gasification Combined Cycle (IGCC) and Integrated coal Gasification Fuel-cell Com- bined cycle (IGFC) are being developed as high-efficiency electric power generation technology. However, the... Coal-fired Integrated Gasification Combined Cycle (IGCC) and Integrated coal Gasification Fuel-cell Com- bined cycle (IGFC) are being developed as high-efficiency electric power generation technology. However, the highest theoretical gross thermal efficiency of the conventional IGCC]IGFC is still below 52~. In order to obtain higher power generation efficiency, an advanced IGCC (A-IGCC) or advanced IGFC (A-IGFC) sys- tem making use of the exergy recuperation concept by recycling waste heat from gas turbine or fuel cells for steam gasification of coal and biomass was proposed in our laboratory, Corresponding to this system, a novel high-density triple-bed combined circulating fluidized bed (TBCFB) gasifier, composed of a downer pyrolyzer, a bubbling fluidized bed char gasifier, and a riser combustor, was proposed to replace traditional gasifiers such as the entrained flow bed gasifier. The new system is expected to more effectively utilize the waste heat from gas turbines or fuel cells and the heat produced by the combustion of the unreacted char in the riser combustor for pyrolysis and gasification of coal and biomass. In this short review, the advantages and future challenges in the development of high-density TBCFB gasifier are presented and discussed. 展开更多
关键词 IGCC/IGFC High-density circulating fluidized bed Gasifier Riser Downer Bubbling fluidized bed Exergy recuperation biomass Coal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部