期刊文献+
共找到35,781篇文章
< 1 2 250 >
每页显示 20 50 100
A deep reinforcement learning approach to gasoline blending real-time optimization under uncertainty
1
作者 Zhiwei Zhu Minglei Yang +3 位作者 Wangli He Renchu He Yunmeng Zhao Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期183-192,共10页
The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization i... The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization in gasoline blending relies on accurate blending models and is challenged by stochastic disturbances.Thus,we propose a real-time optimization algorithm based on the soft actor-critic(SAC)deep reinforcement learning strategy to optimize gasoline blending without relying on a single blending model and to be robust against disturbances.Our approach constructs the environment using nonlinear blending models and feedstocks with disturbances.The algorithm incorporates the Lagrange multiplier and path constraints in reward design to manage sparse product constraints.Carefully abstracted states facilitate algorithm convergence,and the normalized action vector in each optimization period allows the agent to generalize to some extent across different target production scenarios.Through these well-designed components,the algorithm based on the SAC outperforms real-time optimization methods based on either nonlinear or linear programming.It even demonstrates comparable performance with the time-horizon based real-time optimization method,which requires knowledge of uncertainty models,confirming its capability to handle uncertainty without accurate models.Our simulation illustrates a promising approach to free real-time optimization of the gasoline blending process from uncertainty models that are difficult to acquire in practice. 展开更多
关键词 Deep reinforcement learning gasoline blending Real-time optimization PETROLEUM Computer simulation Neural networks
下载PDF
Secondary Cracking of Gasoline and Diesel from Heavy Oil Catalytic Pyrolysis 被引量:6
2
作者 刘植昌 孟祥海 +1 位作者 徐春明 高金森 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第3期309-314,共6页
This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary crackin... This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary cracking reactivity of gasoline and diesel is poor,and the yield of total light olefins is only about 10%(by mass).As reaction temperature increases,ethylene yield increases,butylene yield decreases,and propylene yield shows a maximum.The optimal reaction temperature is about 670℃for the production of light olefins.With the enhance- ment of catalyst-to-oil mass ratio and steam-to-oil mass ratio,the yields of light olefins increase to some extent. About 6.30%of the mass of total aromatic rings is converted by secondary cracking,indicating that aromatic hy- drocarbons are not easy to undergo ring-opening reactions under the present experimental conditions. 展开更多
关键词 secondary cracking gasoline diesel catalytic pyrolysis ethylene PROPYLENE
下载PDF
KELEA (Kinetic Energy Limiting Electrostatic Attraction) Can Markedly Improve the Performance of Gasoline and Diesel Fuels in Power Generation and in Transportation 被引量:3
3
作者 W. John Martin 《Journal of Transportation Technologies》 2016年第3期148-154,共7页
The combustion (burning) of hydrocarbon fuels comprises oxygen mediated breaking of the carbon to carbon and carbon to hydrogen chemical bonds, leading to the formation of oxygen to carbon and oxygen to hydrogen bonds... The combustion (burning) of hydrocarbon fuels comprises oxygen mediated breaking of the carbon to carbon and carbon to hydrogen chemical bonds, leading to the formation of oxygen to carbon and oxygen to hydrogen bonds;primarily as carbon dioxide and water, respectively. The oxygen gas molecules yield considerable energy during the conversion to carbon and hydrogen bound oxygen atoms. The net energy derived from hydrocarbon combustion is normally regarded as being fully converted into heat, as a form of kinetic energy. In industrial processes, some of the resulting heat is used to raise the temperature of other materials, including water for power generation. Combustion derived heat is also used to provide a localized increase in kinetic energy (pressure) of gaseous molecules that can be directly converted into mechanical work. This is the principle of combustion driven transportation and many other power generating engines. An emerging concept is that fluids can also possess a transferrable form of kinetic energy that is unrelated to heat. This newly proposed fluid associated, non-thermal kinetic energy is derived from the environment force termed KELEA (Kinetic Energy Limiting Electrostatic Attraction). KELEA results in the loosening of the hydrogen bonding between liquid molecules and probably also imparts added motion to the molecules. It is proposed that this added non-thermal kinetic energy is carried over into the combustion products, which can consequently yield increased mechanical work. KELEA also seemingly allows for more complete combustion with reduced levels of unburnt hydrocarbons. KELEA activation of liquid fuels can be accomplished using KELEA attracting and transmitting compounds, including activated fluids, either added into or placed in close proximity to the fuel. KELEA activation of fuels, including gasoline and diesel, provides a simple method to significantly improve the efficiency of their use in power generation and in transportation. The studies are relevant to reducing the current worldwide levels of hydrocarbon usage and environmental pollution. 展开更多
关键词 Kiko Mojo gasoline diesel Combustion KELEA Kinetic Energy SOLITON Climate Change
下载PDF
Fischer-Tropsch wax catalytic cracking for the production of low olefin and high octane number gasoline: Process optimization and heat effect calculation
4
作者 Mei Yang Gang Wang +2 位作者 Jian-Nian Han Cheng-Di Gao Jin-Sen Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1255-1265,共11页
To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent flu... To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent fluidized bed (TFB) FCC unit. The experimental results in the riser indicated that under the condition of low reaction temperature and regenerated catalyst temperature, large catalyst-to-oil weight ratio (C/O) and long reaction time, the gasoline olefin content could be reduced to 20.28 wt%, but there is large octane number loss owing to a great loss in high octane number olefin. Therefore, a novel FCC process using the TFB reactor was proposed to strengthen the aromatization reaction. The reaction performance of TFB reactor were investigated. The result demonstrated that the TFB reactor has more significant effect in reducing olefins and improving aromatics. At the expense of certain gasoline yield, the gasoline olefin content reduced to 23.70 wt%, aromatics content could increase to 26.79 wt% and the RON was up to 91.0. The comparison of reactor structure and fluidization demonstrated that the TFB reactor has higher catalyst bed density. The reaction heat and coke combustion heat was calculated indicating the feasibility of its industrial application of the TFB process. 展开更多
关键词 Fischer-Tropsch wax Catalytic cracking RISER TFB gasoline olefin Reaction heat
下载PDF
Recent Advances in the Rapid Detection and Performance Evaluation Methods of Detergent Additives for Gasoline
5
作者 Zhi Wanwan Li Na +2 位作者 Zhu Zhongpeng Li Yan Guo Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期165-176,共12页
Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and eval... Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and evaluating their effectiveness,which makes their regulation difficult.An overview of the current state of the development and application of detergent additives for gasoline in China and other regions,as well as a review of the rapid detection and performance evaluation methods available for analyzing detergent additives are given herein.The review focuses on the convenience,cost,efficiency,and feasibility of on-site detection and the evaluation of various methods,and also looks into future research directions,such as detecting and evaluating detergent additives in ethanol gasoline and with advanced engine technologies. 展开更多
关键词 gasoline detergent additives DEPOSITS rapid detection performance evaluation
下载PDF
Molecular Characterization of C_(9+)Aromatics in Gasoline by Gas Chromatography-Mass Spectrometry
6
作者 Han Xu Song Chunxia +2 位作者 Qian Qin Li Changxiu Sun Xinyuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期81-91,共11页
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How... The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction. 展开更多
关键词 gasoline C_(9+)aromatics heavy aromatics GC-MS
下载PDF
Effects of I-EGR and Pre-Injection on Performance of Gasoline Compression Ignition(GCI)at Low-Load Condition
7
作者 Binbin Yang Leilei Liu +3 位作者 Yan Zhang Jingyu Gong Fan Zhang Tiezhu Zhang 《Energy Engineering》 EI 2023年第10期2233-2250,共18页
Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performanc... Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performance becomes an urgent issue to be solved.In this paper,a GCI engine model was built to investigate the effects of internal EGR(i-EGR)and pre-injection on in-cylinder temperature,spatial concentration of mixture and OH radical,combustion and emission characteristics,and the control strategy for improving the combustion performance was further explored.The results showed an obvious expansion of the zone with an equivalence ratio between 0.8∼1.2 is realized by higher pre-injection ratios,and the s decreases with the increase of pre-injection ratio,but increases with the increase of i-EGR ratio.The high overlap among the equivalentmixture zone,the hightemperature zone,and the OH radical-rich zone can be achieved by higher i-EGR ratio coupled with higher preinjection ratio.By increasing the pre-injection ratio,the combustion efficiency increases first and then decreases,also achieves the peak value with a pre-injection ratio of 60%and is unaffected by i-EGR.The emissions of CO,HC,NOX,and soot can also be reduced to low levels by the combination of higher i-EGR ratios and a pre-injection ratio of 60%. 展开更多
关键词 gasoline compression ignition low-load condition internal EGR pre-injection combustion characteristics EMISSIONS
下载PDF
Lung Function Impairment among Gasoline Attendants: A Cross-Sectional Study
8
作者 Emmanuel Obazee Henry Aiwuyo +8 位作者 Anthony Kweki Tinuade Obazee Tinuade Obazee John Osarenkhoe Uche Agboje Beatrice Torere Nosakhare Ilerhunmwuwa Uchenna Amaechi Gabriel Alugba 《Open Journal of Ecology》 2023年第3期48-63,共16页
Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly ... Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries. 展开更多
关键词 Lung Function Test Lung Impairment Lung Impairment Pattern gasoline Attendants Occupational Hazards Cross-Sectional Study
下载PDF
Lung Function Impairment among Gasoline Attendants: A Cross-Sectional Study
9
作者 Emmanuel Obazee Henry Aiwuyo +8 位作者 Anthony Kweki Tinuade Obazee Tinuade Obazee John Osarenkhoe Uche Agboje Beatrice Torere Nosakhare Ilerhunmwuwa Uchenna Amaechi Gabriel Alugba 《Open Journal of Respiratory Diseases》 2023年第3期48-63,共16页
Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly ... Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries. 展开更多
关键词 Lung Function Test Lung Impairment Lung Impairment Pattern gasoline Attendants Occupational Hazards Cross-Sectional Study
下载PDF
Strategy on Development of Gasoline and Diesel Standards in China with Reference to Overseas Practice for Upgrading Gasoline and Diesel Quality
10
作者 YangZhe YangGuoxun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2004年第2期1-6,共6页
This article analyzes the standards for car exhaust emissions and gasoline and diesel quality in Europe and the US. As revealed by the evolution of gasoline and diesel standards in China, the gasoline and diesel compo... This article analyzes the standards for car exhaust emissions and gasoline and diesel quality in Europe and the US. As revealed by the evolution of gasoline and diesel standards in China, the gasoline and diesel compositions of China and the exhaust gas emissions standard are closely related with the specifics of the petroleum refining industry and automotive industry in China. After studying the current situations of gasoline and diesel quality in China while taking into account the commonly accepted practice in the overseas this article raises some suggestions on development of gasoline and diesel standards in compliance with the actual conditions of China. 展开更多
关键词 gasoline diesel fuel standard SUGGESTION
下载PDF
A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm
11
作者 Wanchen Sun Shaodian Lin +4 位作者 Hao Zhang Liang Guo Wenpeng Zeng Genan Zhu Mengqi Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期187-200,共14页
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ... For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios. 展开更多
关键词 AMMONIA diesel COMBUSTION Kinetic mechanism Multi-objective optimization
下载PDF
Evaluation of the Oxidation Reactivity and Behavior of Exhaust Soot Particles from Diesel Engines with Different Emission Levels
12
作者 Wang Yajun Lin Lei +3 位作者 Xing Jianqiang LüXu Yang He Song Haiqing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期72-80,共9页
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll... The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102. 展开更多
关键词 diesel engine soot particles oxidation reactivity oxidation behavior
下载PDF
A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine
13
作者 Lingjie Zhao Cong Li 《Energy Engineering》 EI 2024年第5期1363-1380,共18页
The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate ... The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced. 展开更多
关键词 Miller cycle EIVC COMBUSTION NOx emissions marine diesel
下载PDF
Efficient simultaneous removal of diesel particulate matter and hydrocarbons from diesel exhaust gas at low temperatures over Cu–CeO_(2)/Al_(2)O_(3) coupling with dielectric barrier discharge plasma
14
作者 任保勇 方世玉 +7 位作者 张甜甜 孙燕 高尔豪 李晶 吴祖良 朱佳丽 王伟 姚水良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期100-109,共10页
Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but t... Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200℃ using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu-CeO_(2) can promote the formation of adsorbed oxygen(M^(+)-O_(2)^(-))and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures.M+O-2Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200°C using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu–CeO_(2) can promote the formation of adsorbed oxygen(–)and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures. 展开更多
关键词 diesel PM plasma catalysis Cu-CeO_(2)/Al_(2)O_(3) DRIFTS-MS synergy effect
下载PDF
Optimization of Diesel and Crude Oil Degradation in a Ghanaian Soil Using Organic Wastes as Amendment
15
作者 Adama Sawadogo Innocent Yao Dotse Lawson +2 位作者 Hama Cissé Cheikna Zongo Aly Savadogo 《Journal of Agricultural Chemistry and Environment》 2024年第1期1-12,共12页
Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimul... Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimulate this degradation by different means. Thus, this study aimed to improve the bio-degradation of diesel and crude oil in a Ghanaian soil by biostimulation. For this, the sampled soil was characterized by standard methods and contaminated with diesel and crude oil at a proportion of 1% (w/w). Then, contaminated soil samples were supplemented with biochar-compost, poultry manure or cow dung at the proportion of 10% (w/w). Periodically, fractions of these samples were taken to evaluate the density of hydrocarbon utilizing bacteria (HUB) and the residual quantities of diesel or crude oil. The characteristics of the soil used show the need for supplementation for better degradation of hydrocarbons. The results of the study show that supplementing the soil with organic substrates increases HUB loads in soils contaminated by diesel and crude oil. They also show that the residual quantities of diesel and crude oil are generally significantly lower in supplemented soils (p = 0.048 and p < 0.0001 respectively). In addition, the study shows that degradation was generally greater in soils contaminated by diesel compared to those contaminated by crude oil, especially at the end of the study. 展开更多
关键词 BIODEGRADATION BIOSTIMULATION SOIL diesel Crude Oil Organic Amendment Ghana
下载PDF
Performance, Combustion and Emission Characteristics of Oxygenated Diesel in DI Engines: A Critical Review
16
作者 Joseph Lungu Lennox Siwale Rudolph Joe Kashinga 《Journal of Power and Energy Engineering》 2024年第6期16-49,共34页
The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofu... The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement. 展开更多
关键词 diesel Engine Alcohol Additives N-BUTANOL Combustion and Properties
下载PDF
Comparative Study of Exhaust Emissions from Diesel and Syngas Powered 3.5 kW Compression Ignition Engine with and without Load
17
作者 Benson Kariuki Paul Njogu +2 位作者 Joseph Kamau Robert Kinyua Sameer Bachani 《Journal of Power and Energy Engineering》 2024年第8期30-46,共17页
Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust ga... Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered. 展开更多
关键词 Emissions Engine Load Temperature Neat-diesel SYNGAS
下载PDF
Study of the Viscosity and Specific Gravity of the Ternary Used Frying Oil (UFO)-Bioethanol-Diesel System
18
作者 Konan Edmond Kouassi Abollé Abolle +3 位作者 N’guessan Luc Brou David Boa N’guessan Raymond Kre Kouassi Benjamin Yao 《Journal of Materials Science and Chemical Engineering》 2024年第4期53-66,共14页
Fossil fuels cover around 80% of global energy consumption. However, the problems linked to their use justify the choice of using biofuel. In order to reduce as much as possible, diesel rate, an increase in the number... Fossil fuels cover around 80% of global energy consumption. However, the problems linked to their use justify the choice of using biofuel. In order to reduce as much as possible, diesel rate, an increase in the number of additives may be considered. Thus, in this work, the study of the used frying oil (UFO), bioethanol and diesel ternary system was undertaken. It emerges from this study that the addition of bioethanol reduces the viscosity and the density of the ternary system and permits a 90% substitution rate for diesel between the UFO and bioethanol. Finally, the percentage of oil becomes 40% after adding alcohol compared to the binary diesel crude vegetable oil mixture where this rate is 30%. 展开更多
关键词 Biofuel UFO-Bioethanol-diesel Ternary Density VISCOSITY
下载PDF
Fuzzy Control Method for Gasoline Engine Idle Speed Control 被引量:6
19
作者 张付军 黄英 +2 位作者 甘海云 葛蕴珊 孙业保 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期408-414,共7页
In order to improve the steady and dynamic characteristic of the idle speed control and study the performance of the fuzzy control method for the idle speed control, a fuzzy control system is developed to control the ... In order to improve the steady and dynamic characteristic of the idle speed control and study the performance of the fuzzy control method for the idle speed control, a fuzzy control system is developed to control the idle speed of gasoline engine. The construction and working principle of the fuzzy controller are described, and the design procedure of the fuzzy controller is given in detail. The control parameters are determined by computer simulation. The simulation and experiments on the engine test bench show that the idle speed is controlled accurately both in stationary and in dynamic states, and the fuzzy control method is robust to the changes of engine parameters. 展开更多
关键词 gasoline engine idle speed fuzzy contro
下载PDF
Numerical investigation of condensation of gasoline vapor with turbulent flow in vertical tubes
20
作者 赵志伟 杜垲 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期302-306,共5页
To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two... To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement. 展开更多
关键词 gasoline vapor CONDENSATION cascade refrigeration condensation rate
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部