The accumulator is used as a pressure compensation device to realize deep-sea microbe gastight sampling. Four key states of the accumulator are proposed to describe the pressure compensation process and a correspondin...The accumulator is used as a pressure compensation device to realize deep-sea microbe gastight sampling. Four key states of the accumulator are proposed to describe the pressure compensation process and a corresponding mathematical model is established to investigate the relationship between the results of pressure compensation and the parameters of the accumulator. Simulation results show that during the falling process of the sampler, the accumulator' s real opening pressure is greater than its precharge pressure; when the sampling depth is 6000 m and the accumulator' s precharge pressure is less than 30 MPa, to increase the accumulator' s precharge pressure can improve pressure compensation results obviously. Laboratory experiments at 60 MPa show that the acctunulator is an effective and reliable pressure compensation device for deep-sea microbe samplers, The success in sea trial at a depth of 2000 m in the South China Sea shows that the mathematical model and laboratory experiment results are reliable.展开更多
A new sampling method of deepsea microplankton with function of in-situ concentrated sampling and gastight sampling was proposed. In-situ concentrated sampling technique was realized as follows: a microplankton membra...A new sampling method of deepsea microplankton with function of in-situ concentrated sampling and gastight sampling was proposed. In-situ concentrated sampling technique was realized as follows: a microplankton membrane was used as filtration membrane, and a deepsea pump was used to pump seawater; the microplankton was captured and the density of microplankton was increased when seawater flow through the filtration membrane. Gastight sampling technique was realized as follows: a precharged accumulator was used as pressure compensator. During the process of lifting the sampler, the accumulator compensated the pressure drop continuously. The laboratory experimental results show that with in-situ concentrated sampling technique, in-situ concentrated sampling can be realized and the maximum concentration ratio reaches up to 500. With pressure compensation technique based on accumulator, gastight sampling can be realized. When sampling at 6 km and the precharge pressure of accumulator is 18 MPa, pressure drop of the sample is less than 2% compared with its original pressure. Deepsea experiment (at 1.9 km) results show that the sampler can realize in-situ concentrated sampling and gastight sampling.展开更多
文摘The accumulator is used as a pressure compensation device to realize deep-sea microbe gastight sampling. Four key states of the accumulator are proposed to describe the pressure compensation process and a corresponding mathematical model is established to investigate the relationship between the results of pressure compensation and the parameters of the accumulator. Simulation results show that during the falling process of the sampler, the accumulator' s real opening pressure is greater than its precharge pressure; when the sampling depth is 6000 m and the accumulator' s precharge pressure is less than 30 MPa, to increase the accumulator' s precharge pressure can improve pressure compensation results obviously. Laboratory experiments at 60 MPa show that the acctunulator is an effective and reliable pressure compensation device for deep-sea microbe samplers, The success in sea trial at a depth of 2000 m in the South China Sea shows that the mathematical model and laboratory experiment results are reliable.
基金Project(DY105-03-01-10) supported by China Ocean Mineral Resources Research and Development Association Project (1343-75221) supported by Central South University
文摘A new sampling method of deepsea microplankton with function of in-situ concentrated sampling and gastight sampling was proposed. In-situ concentrated sampling technique was realized as follows: a microplankton membrane was used as filtration membrane, and a deepsea pump was used to pump seawater; the microplankton was captured and the density of microplankton was increased when seawater flow through the filtration membrane. Gastight sampling technique was realized as follows: a precharged accumulator was used as pressure compensator. During the process of lifting the sampler, the accumulator compensated the pressure drop continuously. The laboratory experimental results show that with in-situ concentrated sampling technique, in-situ concentrated sampling can be realized and the maximum concentration ratio reaches up to 500. With pressure compensation technique based on accumulator, gastight sampling can be realized. When sampling at 6 km and the precharge pressure of accumulator is 18 MPa, pressure drop of the sample is less than 2% compared with its original pressure. Deepsea experiment (at 1.9 km) results show that the sampler can realize in-situ concentrated sampling and gastight sampling.