An ultra-high voltage 4H-silicon carbide(Si C) gate turn-off(GTO) thyristor for low switching time is proposed and analyzed by numerical simulation. It features a double epitaxial p-base in which an extra electrical f...An ultra-high voltage 4H-silicon carbide(Si C) gate turn-off(GTO) thyristor for low switching time is proposed and analyzed by numerical simulation. It features a double epitaxial p-base in which an extra electrical field is induced to enhance the transportation of the electrons in the thin p-base and reduce recombination. As a result, the turn-on characteristics are improved. What is more, to obtain a low turn-off loss, an alternating p^+/n^+region formed in the backside acts as the anode in the GTO thyristor. Consequently, another path formed by the reverse-biased n^+–p junction accelerates the fast removal of excess electrons during turn-off. This work demonstrates that the turn-on time and turn-off time of the new structure are reduced to 37 ns and 783.1 ns, respectively, under a bus voltage of 8000 V and load current of 100 A/cm^2.展开更多
A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling a...A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling area between the split gate and the drain electrode is reduced,thus the gate-to-drain charge(Q_(GD)),reverse transfer capacitance(C_(RSS)) and turn-off loss(E_(off)) are significantly decreased.Moreover,the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide t_(ox),which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction,then the majority carriers are injected to the N-drift to attenuate the minority injection.Therefore,the reverse recovery charge(Q_(RR)),time(T_(RR)) and peak current(I_(RRM)) are effectively reduced at the reverse freewheeling state.Additionally,the specific on-resistance(R_(on,sp)) and breakdown voltage(BV) are also studied to evaluate the static properties of the proposed SD-MOS.The simulation results show that the Q_(GD) of 6 nC/cm^(2),the C_(RSS) of 1.1 pF/cm^(2) at the V_(DS) of 150 V,the QRR of 1.2 μC/cm^(2) and the R_(on,sp) of 8.4 mΩ·cm^(2) are obtained,thus the figures of merit(FOM) including Q_(GD) ×R_(on,sp) of50 nC·mΩ,E_(off) × R_(on,sp) of 0.59 mJ·mΩ and the Q_(RR) × R_(on,sp) of 10.1 μC·mΩ are achieved for the proposed SD-MOS.展开更多
A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this ar...A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this article.The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gateoxide electric field.The integrated p^(+)-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device.Numerical analysis results show that,compared with the conventional asymmetric cell trench MOSFET(CA-TMOS),the high-frequency figure of merit(HF-FOM,R_(on,sp)×Q_(gd,sp))is reduced by 92.5%,and the gate-oxide electric field is reduced by 75%.In addition,the forward conduction voltage drop(V_(F))and gate-drain charge(Q_(gd))are reduced from 2.90 V and 63.5μC/cm^(2) in the CA-TMOS to 1.80 V and 26.1μC/cm^(2) in the SGHJD-TMOS,respectively.Compared with the CA-TMOS,the turn-on loss(E_(on)) and turn-off loss(E_(off)) of the SGHJD-TMOS are reduced by 21.1%and 12.2%,respectively.展开更多
Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via a...Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region. The forward blocking, conducting, and switching characteristics are analyzed and compared with an SA-GTO and conventional GTO. The results show that the IEC-GTO can obtain a better trade-off relation between on-state and turn-off characteristics. Additionally,the width of the oxide layer covering the anode region and the doping concentration of the anode region are optimized, the process feasibility is analyzed, and a realization scheme is given. The results show that the introduction of an oxide layer would not increase the complexity of process of the IEC-GTO.展开更多
换相失败问题(commutation failure,CF)是电网换相换流高压直流输电技术(line commutated converter high voltage directcurrent,LCC-HVDC)面临的固有难题。为了解决该问题,已有文献主要从拓扑结构、控制策略等方面着手,鲜见抵御换相...换相失败问题(commutation failure,CF)是电网换相换流高压直流输电技术(line commutated converter high voltage directcurrent,LCC-HVDC)面临的固有难题。为了解决该问题,已有文献主要从拓扑结构、控制策略等方面着手,鲜见抵御换相失败的新型换流阀研制及试验研究。该文开展基于大功率逆阻型集成门极换流晶闸管(reverse blocking integrated gate commutated thyristor,RB-IGCT)的新型换流阀试验研究及试验等效性分析。首先,阐释新型换流阀抵御换相失败的原理,并针对新型换流阀不同的工作模式,提出对新型电力电子器件的需求。然后,利用现有的型式试验合成回路平台开展适用于传统晶闸管换流阀的运行试验,并分析试验结果,得出大部分试验项目等效性较好而小熄弧角试验和关断试验等效性较差的结论。最后,针对这两项特殊试验提出新的试验方法和试验电路,可为新型换流阀的研发和应用提供一定的技术基础。展开更多
具有万伏级以上电压隔离和兆瓦级以上直流能量变换能力的大容量直流变压器(high-power dc transformer,HDCT),是实现高/中/低压直流系统互联、构建直流电网的核心基础装备。文中提出基于IGCT-Plus器件和中频隔离的HDCT技术方案,给出IGCT...具有万伏级以上电压隔离和兆瓦级以上直流能量变换能力的大容量直流变压器(high-power dc transformer,HDCT),是实现高/中/低压直流系统互联、构建直流电网的核心基础装备。文中提出基于IGCT-Plus器件和中频隔离的HDCT技术方案,给出IGCT-HDCT拓扑结构,分析换流特性,提出实现软开通和准软关断的换流方法,可大幅降低开关损耗。在此基础上,对功率器件和变压器损耗进行系统分析,针对基于中频隔离的高压大容量直流变压器,提出的IGCT方案相比,Si C和IGBT方案具有更低的损耗。文中给出MW级IGCT-HDCT功率模块的设计方法,研制工程样机,并对子模块的大电流关断和大功率运行状态进行系统性的测试,验证IGCT-HDCT方案的正确性和有效性。展开更多
文中提出一款基于自主设计的尺寸为8mm×8mm的10kV碳化硅(silicon carbide,SiC)门极可关断晶闸管(gate-turn-off thyristor,GTO)单芯片封装的焊接式模块。详细介绍10kV SiC GTO模块的设计与制造工艺,通过对比裸芯片与封装后模块在10...文中提出一款基于自主设计的尺寸为8mm×8mm的10kV碳化硅(silicon carbide,SiC)门极可关断晶闸管(gate-turn-off thyristor,GTO)单芯片封装的焊接式模块。详细介绍10kV SiC GTO模块的设计与制造工艺,通过对比裸芯片与封装后模块在10.5kV阻断电压下的漏电流,验证模块绝缘设计冗余和封装工艺,对模块的动态、静态、极限过流能力、关断增益等性能进行测试并给出初步测试结果。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51677149)
文摘An ultra-high voltage 4H-silicon carbide(Si C) gate turn-off(GTO) thyristor for low switching time is proposed and analyzed by numerical simulation. It features a double epitaxial p-base in which an extra electrical field is induced to enhance the transportation of the electrons in the thin p-base and reduce recombination. As a result, the turn-on characteristics are improved. What is more, to obtain a low turn-off loss, an alternating p^+/n^+region formed in the backside acts as the anode in the GTO thyristor. Consequently, another path formed by the reverse-biased n^+–p junction accelerates the fast removal of excess electrons during turn-off. This work demonstrates that the turn-on time and turn-off time of the new structure are reduced to 37 ns and 783.1 ns, respectively, under a bus voltage of 8000 V and load current of 100 A/cm^2.
基金Project supported by the National Natural Science Foundation of China (Grants No. 61604027 and 61704016)the Chongqing Natural Science Foundation, China (Grant No. cstc2020jcyj-msxmX0550)。
文摘A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling area between the split gate and the drain electrode is reduced,thus the gate-to-drain charge(Q_(GD)),reverse transfer capacitance(C_(RSS)) and turn-off loss(E_(off)) are significantly decreased.Moreover,the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide t_(ox),which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction,then the majority carriers are injected to the N-drift to attenuate the minority injection.Therefore,the reverse recovery charge(Q_(RR)),time(T_(RR)) and peak current(I_(RRM)) are effectively reduced at the reverse freewheeling state.Additionally,the specific on-resistance(R_(on,sp)) and breakdown voltage(BV) are also studied to evaluate the static properties of the proposed SD-MOS.The simulation results show that the Q_(GD) of 6 nC/cm^(2),the C_(RSS) of 1.1 pF/cm^(2) at the V_(DS) of 150 V,the QRR of 1.2 μC/cm^(2) and the R_(on,sp) of 8.4 mΩ·cm^(2) are obtained,thus the figures of merit(FOM) including Q_(GD) ×R_(on,sp) of50 nC·mΩ,E_(off) × R_(on,sp) of 0.59 mJ·mΩ and the Q_(RR) × R_(on,sp) of 10.1 μC·mΩ are achieved for the proposed SD-MOS.
基金Major Science and Technology Projects of Hainan Province,China(Grant Nos.ZDKJ2021023 and ZDKJ2021042)Hainan Provincial Natural Science Foundation of China(Grant Nos.622QN285 and 521QN210)。
文摘A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this article.The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gateoxide electric field.The integrated p^(+)-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device.Numerical analysis results show that,compared with the conventional asymmetric cell trench MOSFET(CA-TMOS),the high-frequency figure of merit(HF-FOM,R_(on,sp)×Q_(gd,sp))is reduced by 92.5%,and the gate-oxide electric field is reduced by 75%.In addition,the forward conduction voltage drop(V_(F))and gate-drain charge(Q_(gd))are reduced from 2.90 V and 63.5μC/cm^(2) in the CA-TMOS to 1.80 V and 26.1μC/cm^(2) in the SGHJD-TMOS,respectively.Compared with the CA-TMOS,the turn-on loss(E_(on)) and turn-off loss(E_(off)) of the SGHJD-TMOS are reduced by 21.1%and 12.2%,respectively.
文摘Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region. The forward blocking, conducting, and switching characteristics are analyzed and compared with an SA-GTO and conventional GTO. The results show that the IEC-GTO can obtain a better trade-off relation between on-state and turn-off characteristics. Additionally,the width of the oxide layer covering the anode region and the doping concentration of the anode region are optimized, the process feasibility is analyzed, and a realization scheme is given. The results show that the introduction of an oxide layer would not increase the complexity of process of the IEC-GTO.
文摘集成门极换流晶闸管(integrated gate commutated thyristor,IGCT)换流路径杂散阻抗是评估其关断能力的重要参数,现有离线测量方法有诸多缺陷并且测试过程复杂,实时性差。该文主要针对IGCT换流路径杂散阻抗在线监测问题,结合IGCT关断过程,分析了换流路径杂散阻抗的构成;根据基尔霍夫电流定律(Kirchhoff’s current law,KCL)、基尔霍夫电压定律(Kirchhoff’s voltage law,KVL)推导了换流路径电压、电流方程,进而提出基于阴极集成印刷电路板(printed circuit board,PCB)式电流传感器的换流路径杂散参数在线监测方法;采用高速采集卡和LabVIEW软件,构建了测量系统;通过在高压、大电流加速老化测试平台上的实际测试,实现了mΩ级电阻与nH级电感的杂散阻抗准确提取,验证了在线监测方法的有效性。
文摘具有万伏级以上电压隔离和兆瓦级以上直流能量变换能力的大容量直流变压器(high-power dc transformer,HDCT),是实现高/中/低压直流系统互联、构建直流电网的核心基础装备。文中提出基于IGCT-Plus器件和中频隔离的HDCT技术方案,给出IGCT-HDCT拓扑结构,分析换流特性,提出实现软开通和准软关断的换流方法,可大幅降低开关损耗。在此基础上,对功率器件和变压器损耗进行系统分析,针对基于中频隔离的高压大容量直流变压器,提出的IGCT方案相比,Si C和IGBT方案具有更低的损耗。文中给出MW级IGCT-HDCT功率模块的设计方法,研制工程样机,并对子模块的大电流关断和大功率运行状态进行系统性的测试,验证IGCT-HDCT方案的正确性和有效性。
文摘文中提出一款基于自主设计的尺寸为8mm×8mm的10kV碳化硅(silicon carbide,SiC)门极可关断晶闸管(gate-turn-off thyristor,GTO)单芯片封装的焊接式模块。详细介绍10kV SiC GTO模块的设计与制造工艺,通过对比裸芯片与封装后模块在10.5kV阻断电压下的漏电流,验证模块绝缘设计冗余和封装工艺,对模块的动态、静态、极限过流能力、关断增益等性能进行测试并给出初步测试结果。