An 88 nm gate-length In0.53Ga0.47As/In0.52Alo.48As InP-based high electron mobility transistor (HEMT) was successfully fabricated with a gate width of 2× 50 μm and source-drain space of 2.4μm. The T-gate was ...An 88 nm gate-length In0.53Ga0.47As/In0.52Alo.48As InP-based high electron mobility transistor (HEMT) was successfully fabricated with a gate width of 2× 50 μm and source-drain space of 2.4μm. The T-gate was defined by electron beam lithography in a trilayer of PMMA/A1/UVIII. The exposure dose and the development time were optimized, and followed by an appropriate residual resist removal process. These devices also demonstrated excellent DC and RF characteristics: the extrinsic maximum transconductance, the full channel cur- rent, the threshold voltage, the current gain cutoff frequency and the maximum oscillation frequency of the HEMTs were 765 mS/mm, 591 mA/mm, -0.5 V, 150 GHz and 201 GHz, respectively. The HEMTs are promising for use in millimeter-wave integrated circuits.展开更多
Silicon on insulator (SOI) technology permits a good solution to the miniaturization as the MOSFET size scales down. This paper is about to compare the electrical performance of nanoscale FD-SOI MOSFET at various gate...Silicon on insulator (SOI) technology permits a good solution to the miniaturization as the MOSFET size scales down. This paper is about to compare the electrical performance of nanoscale FD-SOI MOSFET at various gate lengths. The performance is compared and contrasted with the help of threshold voltage, subthreshold slope, on-state current and leakage current. Interestingly, by decreasing the gate length, the leakage current and on-state current are increased but the threshold voltage is decreased and the sub-threshold slope is degraded. Silvaco two-dimensional simulations are used to analyze the performance of the proposed structures.展开更多
文摘An 88 nm gate-length In0.53Ga0.47As/In0.52Alo.48As InP-based high electron mobility transistor (HEMT) was successfully fabricated with a gate width of 2× 50 μm and source-drain space of 2.4μm. The T-gate was defined by electron beam lithography in a trilayer of PMMA/A1/UVIII. The exposure dose and the development time were optimized, and followed by an appropriate residual resist removal process. These devices also demonstrated excellent DC and RF characteristics: the extrinsic maximum transconductance, the full channel cur- rent, the threshold voltage, the current gain cutoff frequency and the maximum oscillation frequency of the HEMTs were 765 mS/mm, 591 mA/mm, -0.5 V, 150 GHz and 201 GHz, respectively. The HEMTs are promising for use in millimeter-wave integrated circuits.
文摘Silicon on insulator (SOI) technology permits a good solution to the miniaturization as the MOSFET size scales down. This paper is about to compare the electrical performance of nanoscale FD-SOI MOSFET at various gate lengths. The performance is compared and contrasted with the help of threshold voltage, subthreshold slope, on-state current and leakage current. Interestingly, by decreasing the gate length, the leakage current and on-state current are increased but the threshold voltage is decreased and the sub-threshold slope is degraded. Silvaco two-dimensional simulations are used to analyze the performance of the proposed structures.