Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe...Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.展开更多
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ...Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.展开更多
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec...An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.展开更多
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli...As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models.展开更多
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I...The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation.展开更多
Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic event...Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic events with a low signal-to-noise ratio. Because of this requirement, we propose a recurrent neural network model named gated recurrent unit and support vector machine(GRU;VM). The proposed model ensures high accuracy while reducing the parameter number and hardware requirement in the training process. Since micro-seismic events in hot dry rock produce large wave amplitudes and strong vibrations, it is difficult to reverse the onset of each individual event. In this study, we utilize a support vector machine(SVM) as a classifier to improve the micro-seismic event detection accuracy. To validate the methodology, we compare the simulation results of the short-term-average to the long-term-average(STA/LTA) method with GRU;VM method by using hot dry rock micro-seismic event data in Qinghai Province, China. Our proposed method has an accuracy of about 95% for identifying micro-seismic events with low signal-to-noise ratios. By ignoring smaller micro-seismic events, the detection procedure can be processed more efficiently, which is able to provide a real-time observation on the types of hydraulic fracturing in the reservoirs.展开更多
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ...Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times.展开更多
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a...The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.展开更多
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project...Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage.展开更多
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu...Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.展开更多
Purpose-The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations(NSS).Because the conventional methods for the prediction of NSS,such as support vect...Purpose-The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations(NSS).Because the conventional methods for the prediction of NSS,such as support vector machine,particle swarm optimization,etc.,lack accuracy,robustness and efficiency,in this study,the authors propose a new method for the prediction of NSS based on recurrent neural network(RNN)with gated recurrent unit.Design/methodology/approach-This method extracts internal and external information features from the original time-series network data for the first time.Then,the extracted features are applied to the deep RNN model for training and validation.After iteration and optimization,the accuracy of predictions of NSS will be obtained by the well-trained model,and the model is robust for the unstable network data.Findings-Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models.Although the deep RNN models need more time consumption for training,they guarantee the accuracy and robustness of prediction in return for validation.Originality/value-In the prediction of NSS time-series data,the proposed internal and external information features are well described the original data,and the employment of deep RNN model will outperform the state-of-the-arts models.展开更多
Short-term load forecasting(STLF)plays a crucial role in the smart grid.However,it is challenging to capture the long-time dependence and the nonlinear relationship due to the comprehensive fluctuations of the electri...Short-term load forecasting(STLF)plays a crucial role in the smart grid.However,it is challenging to capture the long-time dependence and the nonlinear relationship due to the comprehensive fluctuations of the electrical load.In this paper,an STLF model based on gated recurrent unit and multi-head attention(GRU-MA)is proposed to address the aforementioned problems.The proposed model accommodates the time series and nonlinear relationship of load data through gated recurrent unit(GRU)and exploits multi-head attention(MA)to learn the decisive features and long-term dependencies.Additionally,the proposed model is compared with the support vector regression(SVR)model,the recurrent neural network and multi-head attention(RNN-MA)model,the long short-term memory and multi-head attention(LSTM-MA)model,the GRU model,and the temporal convolutional network(TCN)model using the public dataset of the Global Energy Forecasting Competition 2014(GEFCOM2014).The results demonstrate that the GRU-MA model has the best prediction accuracy.展开更多
Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed du...Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed due to its variable and random characteristics.For the objective to enhance the performance of forecasting short-term wind speed,this work puts forward a hybrid deep learning model mixing time series decomposition algorithm and gated recurrent unit(GRU).The time series decomposition algorithm combines the following two parts:(1)the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),and(2)wavelet packet decomposition(WPD).Firstly,the normalized wind speed time series(WSTS)are handled by CEEMDAN to gain pure fixed-frequency components and a residual signal.The WPD algorithm conducts the second-order decomposition to the first component that contains complex and high frequency signal of raw WSTS.Finally,GRU networks are established for all the relevant components of the signals,and the predicted wind speeds are obtained by superimposing the prediction of each component.Results from two case studies,adopting wind data from laboratory and wind farm,respectively,suggest that the related trend of the WSTS can be separated effectively by the proposed time series decomposition algorithm,and the accuracy of short-time wind speed prediction can be heightened significantly mixing the time series decomposition algorithm and GRU networks.展开更多
Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural ...Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM;R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM;R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making.展开更多
Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improv...Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improve separation performance.However,speech separation in reverberant noisy environment is still a challenging task.To address this,a novel speech separation algorithm using gate recurrent unit(GRU)network based on microphone array has been proposed in this paper.The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost.The proposed algorithm extracts the sub-band steered response power-phase transform(SRP-PHAT)weighted by gammatone filter as the speech separation feature due to its discriminative and robust spatial position in formation.Since the GRU net work has the advantage of processing time series data with faster training speed and fewer training parameters,the GRU model is adopted to process the separation featuresof several sequential frames in the same sub-band to estimate the ideal Ratio Masking(IRM).The proposed algorithm decomposes the mixture signals into time-frequency(TF)units using gammatone filter bank in the frequency domain,and the target speech is reconstructed in the frequency domain by masking the mixture signal according to the estimated IRM.The operations of decomposing the mixture signal and reconstructing the target signal are completed in the frequency domain which can reduce the total computational cost.Experimental results demonstrate that the proposed algorithm realizes omnidirectional speech sep-aration in noisy and reverberant environments,provides good performance in terms of speech quality and intelligibility,and has the generalization capacity to reverberate.展开更多
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit...Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy.展开更多
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been...The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance.展开更多
Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also ...Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also be used for the discriminant analysis of medicines.Long short-term memory(LSTM)neural network,bidirectional long short-term memory(BiLSTM)neural network and gated recurrent unit(GRU)network are variants of the recurrent neural network(RNN).The potential relationship between nonlinear features learned from the sequence by these variants is used to complete the missions infields such as natural language processing,signal classification and video analysis.Since the effect of these variants in drug identification is still to be studied,this paper constructs a multiclassifier of these three variants,using compoundα-keto acid tablets produced by four manufacturers and repaglinide tablets produced by five manufacturers as the research object.Then,the paper analyzes the impacts of seven different preprocessed methods on the drug NIR data by constructing different layers of LSTM,BiLSTM and GRU networks and compares different classification model indicators and training time of each model.When the spectrum data are pre-processed by z-score normalization,the GRU-3 model has the best accuracy in all models.The BiLSTM models are better for analyzing high coincidence data.The method proposed in this paper can be further extended to other NIR spectroscopy data sets.展开更多
This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impa...This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impact.The study utilizes data collected by the Environmental Protection Agency(EPA)to develop two distinct RNN predictive models:one built upon the long-short term memory(LSTM)and the other utilizing the gated recurrent unit(GRU).These models are fed with a combination of historical and anticipated air temperature,air moisture,and NOx emissions as inputs to forecast future NOx emissions.Both LSTM and GRU models can capture the intricate pulse patterns inherent in soil NOx emissions.Notably,the GRU model emerges as the superior performer,surpassing the LSTM model in predictive accuracy while demonstrating efficiency by necessitating less training time.Intriguingly,the investigation into varying input features reveals that relying solely on past NOx emissions as input yields satisfactory performance,highlighting the dominant influence of this factor.The study also delves into the impact of altering input series lengths and training data sizes,yielding insights into optimal configurations for enhanced model performance.Importantly,the findings promise to advance our grasp of soil NOx emission dynamics,with implications for environmental management strategies.Looking ahead,the anticipated availability of additional measurements is poised to bolster machine-learning model efficacy.Furthermore,the future study will explore physical-based RNNs,a promising avenue for deeper insights into soil NOx emission prediction.展开更多
基金The authors thank the Yayasan Universiti Teknologi PETRONAS(YUTP FRG Grant No.015LC0-428)at Universiti Teknologi PETRO-NAS for supporting this study.
文摘Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.
基金supported by the National Natural Science Foundation of China (6202201562088101)+1 种基金Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)Shanghai Municip al Commission of Science and Technology Project (19511132101)。
文摘Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
基金funded by“The Pearl River Talent Recruitment Program”of Guangdong Province in 2019(Grant No.2019CX01G338)the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019).
文摘An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.
基金Supported in part by Natural Science Foundation of China(Grant Nos.51835009,51705398)Shaanxi Province 2020 Natural Science Basic Research Plan(Grant No.2020JQ-042)Aeronautical Science Foundation(Grant No.2019ZB070001).
文摘As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models.
基金jointly supported by the National Science Foundation of China (Grant Nos. 42275007 and 41865003)Jiangxi Provincial Department of science and technology project (Grant No. 20171BBG70004)。
文摘The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation.
基金supported by National Key R&D Program of China(Grant No.2018YFB1501803,2019YFC1804805-4)China Geological Survey Project(Grant No.DD2019135)。
文摘Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic events with a low signal-to-noise ratio. Because of this requirement, we propose a recurrent neural network model named gated recurrent unit and support vector machine(GRU;VM). The proposed model ensures high accuracy while reducing the parameter number and hardware requirement in the training process. Since micro-seismic events in hot dry rock produce large wave amplitudes and strong vibrations, it is difficult to reverse the onset of each individual event. In this study, we utilize a support vector machine(SVM) as a classifier to improve the micro-seismic event detection accuracy. To validate the methodology, we compare the simulation results of the short-term-average to the long-term-average(STA/LTA) method with GRU;VM method by using hot dry rock micro-seismic event data in Qinghai Province, China. Our proposed method has an accuracy of about 95% for identifying micro-seismic events with low signal-to-noise ratios. By ignoring smaller micro-seismic events, the detection procedure can be processed more efficiently, which is able to provide a real-time observation on the types of hydraulic fracturing in the reservoirs.
基金National Natural Science Foundation of China(Nos.61863024,71761023)Funding for Scientific Research Projects of Colleges and Universities in Gansu Province(Nos.2018C-11,2018A-22)Natural Science Fund of Gansu Province(No.18JR3RA130)。
文摘Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times.
文摘The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.
基金State Key Laboratory of Hydroscience and Hydraulic Engineering of Tsinghua University,Grant/Award Number:2019-KY-03Key Technology of Intelligent Construction of Urban Underground Space of North China University of Technology,Grant/Award Number:110051360022XN108-19+3 种基金Research Start-up Fund Project of North China University of Technology,Grant/Award Number:110051360002Yujie Project of North China University of Technology,Grant/Award Number:216051360020XN199/006National Natural Science Foundation of China,Grant/Award Numbers:51522903,51774184National Key R&D Program of China,Grant/Award Numbers:2018YFC1504801,2018YFC1504902。
文摘Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage.
基金supported in part by the National Natural Science Foundation of China(No.62172036).
文摘Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.
基金supported by the funds of Ningde Normal University Youth Teacher Research Program(2015Q15)The Education Science Project of the Junior Teacher in the Education Department of Fujian province(JAT160532).
文摘Purpose-The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations(NSS).Because the conventional methods for the prediction of NSS,such as support vector machine,particle swarm optimization,etc.,lack accuracy,robustness and efficiency,in this study,the authors propose a new method for the prediction of NSS based on recurrent neural network(RNN)with gated recurrent unit.Design/methodology/approach-This method extracts internal and external information features from the original time-series network data for the first time.Then,the extracted features are applied to the deep RNN model for training and validation.After iteration and optimization,the accuracy of predictions of NSS will be obtained by the well-trained model,and the model is robust for the unstable network data.Findings-Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models.Although the deep RNN models need more time consumption for training,they guarantee the accuracy and robustness of prediction in return for validation.Originality/value-In the prediction of NSS time-series data,the proposed internal and external information features are well described the original data,and the employment of deep RNN model will outperform the state-of-the-arts models.
基金supported by the National Natural Science Foundation of China(61771258)。
文摘Short-term load forecasting(STLF)plays a crucial role in the smart grid.However,it is challenging to capture the long-time dependence and the nonlinear relationship due to the comprehensive fluctuations of the electrical load.In this paper,an STLF model based on gated recurrent unit and multi-head attention(GRU-MA)is proposed to address the aforementioned problems.The proposed model accommodates the time series and nonlinear relationship of load data through gated recurrent unit(GRU)and exploits multi-head attention(MA)to learn the decisive features and long-term dependencies.Additionally,the proposed model is compared with the support vector regression(SVR)model,the recurrent neural network and multi-head attention(RNN-MA)model,the long short-term memory and multi-head attention(LSTM-MA)model,the GRU model,and the temporal convolutional network(TCN)model using the public dataset of the Global Energy Forecasting Competition 2014(GEFCOM2014).The results demonstrate that the GRU-MA model has the best prediction accuracy.
基金This work was supported in part by the National Key Research and Development Project of China(No.2019YFE0105300)the National Natural Science Foundation of China(No.61972443)the Hunan Provincial Key Research and Development Project of China(No.2022WK2006).
文摘Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed due to its variable and random characteristics.For the objective to enhance the performance of forecasting short-term wind speed,this work puts forward a hybrid deep learning model mixing time series decomposition algorithm and gated recurrent unit(GRU).The time series decomposition algorithm combines the following two parts:(1)the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),and(2)wavelet packet decomposition(WPD).Firstly,the normalized wind speed time series(WSTS)are handled by CEEMDAN to gain pure fixed-frequency components and a residual signal.The WPD algorithm conducts the second-order decomposition to the first component that contains complex and high frequency signal of raw WSTS.Finally,GRU networks are established for all the relevant components of the signals,and the predicted wind speeds are obtained by superimposing the prediction of each component.Results from two case studies,adopting wind data from laboratory and wind farm,respectively,suggest that the related trend of the WSTS can be separated effectively by the proposed time series decomposition algorithm,and the accuracy of short-time wind speed prediction can be heightened significantly mixing the time series decomposition algorithm and GRU networks.
文摘Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM;R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM;R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making.
基金This work is supported by Nanjing Institute of Technology(NIT)fund for Research Startup Projects of Introduced talents under Grant No.YKJ202019Nature Sci-ence Research Project of Higher Education Institutions in Jiangsu Province under Grant No.21KJB510018+1 种基金National Nature Science Foundation of China(NSFC)under Grant No.62001215NIT fund for Doctoral Research Projects under Grant No.ZKJ2020003.
文摘Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improve separation performance.However,speech separation in reverberant noisy environment is still a challenging task.To address this,a novel speech separation algorithm using gate recurrent unit(GRU)network based on microphone array has been proposed in this paper.The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost.The proposed algorithm extracts the sub-band steered response power-phase transform(SRP-PHAT)weighted by gammatone filter as the speech separation feature due to its discriminative and robust spatial position in formation.Since the GRU net work has the advantage of processing time series data with faster training speed and fewer training parameters,the GRU model is adopted to process the separation featuresof several sequential frames in the same sub-band to estimate the ideal Ratio Masking(IRM).The proposed algorithm decomposes the mixture signals into time-frequency(TF)units using gammatone filter bank in the frequency domain,and the target speech is reconstructed in the frequency domain by masking the mixture signal according to the estimated IRM.The operations of decomposing the mixture signal and reconstructing the target signal are completed in the frequency domain which can reduce the total computational cost.Experimental results demonstrate that the proposed algorithm realizes omnidirectional speech sep-aration in noisy and reverberant environments,provides good performance in terms of speech quality and intelligibility,and has the generalization capacity to reverberate.
基金supported by the Natural Science Foundation of China(Grant Nos.51979158,51639008,51679135,and 51422905)the Program of Shanghai Academic Research Leader by Science and Technology Commission of Shanghai Municipality(Project No.19XD1421900)。
文摘Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy.
基金Supported by U.K.EPSRC Platform Grant(Grant No.EP/P027121/1).
文摘The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance.
基金This research was supported by the Science and Technology Planning Project of Guangdong Province(Grant Nos.2017B020221002,2018B020207008 and 2021B1111610005)Science and Technology Planning Project of Guangzhou,Grant No.201707010410。
文摘Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also be used for the discriminant analysis of medicines.Long short-term memory(LSTM)neural network,bidirectional long short-term memory(BiLSTM)neural network and gated recurrent unit(GRU)network are variants of the recurrent neural network(RNN).The potential relationship between nonlinear features learned from the sequence by these variants is used to complete the missions infields such as natural language processing,signal classification and video analysis.Since the effect of these variants in drug identification is still to be studied,this paper constructs a multiclassifier of these three variants,using compoundα-keto acid tablets produced by four manufacturers and repaglinide tablets produced by five manufacturers as the research object.Then,the paper analyzes the impacts of seven different preprocessed methods on the drug NIR data by constructing different layers of LSTM,BiLSTM and GRU networks and compares different classification model indicators and training time of each model.When the spectrum data are pre-processed by z-score normalization,the GRU-3 model has the best accuracy in all models.The BiLSTM models are better for analyzing high coincidence data.The method proposed in this paper can be further extended to other NIR spectroscopy data sets.
基金support from the University of Iowa Jumpstarting Tomorrow Community Feasibility Grants and OVPR Interdisciplinary Scholars Program for this study.Z.Wang and S.Xiao received support from the U.S.Department of Education(E.D.#P116S210005)Q.Wang and J.Wang acknowledge the support from NASA Atmospheric Composition Modeling and Analysis Program(ACMAP,Grant#:80NSSC19K0950).
文摘This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impact.The study utilizes data collected by the Environmental Protection Agency(EPA)to develop two distinct RNN predictive models:one built upon the long-short term memory(LSTM)and the other utilizing the gated recurrent unit(GRU).These models are fed with a combination of historical and anticipated air temperature,air moisture,and NOx emissions as inputs to forecast future NOx emissions.Both LSTM and GRU models can capture the intricate pulse patterns inherent in soil NOx emissions.Notably,the GRU model emerges as the superior performer,surpassing the LSTM model in predictive accuracy while demonstrating efficiency by necessitating less training time.Intriguingly,the investigation into varying input features reveals that relying solely on past NOx emissions as input yields satisfactory performance,highlighting the dominant influence of this factor.The study also delves into the impact of altering input series lengths and training data sizes,yielding insights into optimal configurations for enhanced model performance.Importantly,the findings promise to advance our grasp of soil NOx emission dynamics,with implications for environmental management strategies.Looking ahead,the anticipated availability of additional measurements is poised to bolster machine-learning model efficacy.Furthermore,the future study will explore physical-based RNNs,a promising avenue for deeper insights into soil NOx emission prediction.