As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
The 13th Meeting of the China-Africa Think Tanks Forum took place in Dar es Salaam,Tanzania,on March 8,2024.Under the theme of“China-African Practice:Building a Community with a Shared Future”,the forum delved into ...The 13th Meeting of the China-Africa Think Tanks Forum took place in Dar es Salaam,Tanzania,on March 8,2024.Under the theme of“China-African Practice:Building a Community with a Shared Future”,the forum delved into the major concerns and strategic cooperation between China and Africa in the new era.It aimed to advance the implementation of various initiatives and accomplishments in China-Africa cooperation while also gathering insights for the upcoming session of the Forum on China-Africa Cooperation(FOCAC).展开更多
Shanghai,2 August 2024.Including everything from organic buttons and floral prints,to temperature-regulating and weather-resistant fibres,the apparel value chain is as diverse as it is extensive.Buyers at trade fairs ...Shanghai,2 August 2024.Including everything from organic buttons and floral prints,to temperature-regulating and weather-resistant fibres,the apparel value chain is as diverse as it is extensive.Buyers at trade fairs with thousands of exhibitors can be hard pressed finding the fabrics they need,which is a key reason numerous suppliers at autumn's lntertextile Apparel will gather under the banners of specialised zones and pavilions.Taking place from 27-29 August at the National Exhibition and Convention Center (Shanghai),the fair will featu re eight product zones,including Accessories Vision,Functional Lab,and Verve for Design.Meanwhile,suppliers in eight country and region pavilions will showcase various innovations and high-quality textiles.Altogether the platform is set to welcome around 4,000 exhibitors from 25countries and regions.展开更多
Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchho...Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.展开更多
Human living environment interacts with human behaviors.Environment to some degree determines human behaviors which in return reshape and sustain the dynamic environment.Taking Richard Jefferies' The Acorn Gathere...Human living environment interacts with human behaviors.Environment to some degree determines human behaviors which in return reshape and sustain the dynamic environment.Taking Richard Jefferies' The Acorn Gatherer as a case study,this paper makes an argument that the behaviors of the villagers in the story can be more adequately interpreted in view of the backward countryside environment,and the same is true with the author Richard Jefferies' non-interference in the omniscient third-person point of view in writing the story.It is Richard Jefferies' family environment that makes up his viewpoint of writing,reflecting his critical loving of the countryside,where lives boom and conventions are extremely followed.展开更多
The Acorn Gatherer by Richard Jefferies is an allegorical tragedy, in which a nameless boy, born out of wedlock, is viewed as a sort of icon of sin, and is ultimately driven to death by the rigid and unforgiving socia...The Acorn Gatherer by Richard Jefferies is an allegorical tragedy, in which a nameless boy, born out of wedlock, is viewed as a sort of icon of sin, and is ultimately driven to death by the rigid and unforgiving social conventions.展开更多
Reverse Time Migration(RTM)Surface Ofset Gathers(SOGs)are demonstrated to deliver more superior residual dip information than ray-based approaches.It appears more powerful in complex geological settings,such as salt a...Reverse Time Migration(RTM)Surface Ofset Gathers(SOGs)are demonstrated to deliver more superior residual dip information than ray-based approaches.It appears more powerful in complex geological settings,such as salt areas.Still,the computational cost of constructing RTM SOGs is a big challenge in applying it to 3D feld data.To tackle this challenge,we propose a novel method using dips of local events as a guide for RTM gather interpolation.The residual-dip information of the SOGs is created by connecting local events from depth-domain to time-domain via ray tracing.The proposed method is validated by a synthetic experiment and a feld example.It mitigates the computational cost by an order of magnitude while producing comparable results as fully computed RTM SOGs.展开更多
Shale gas gathering systems are of great importance in gas fields for the efficient and reliable transportation of gas.In traditional design methods,pipeline layouts are optimized only from an economic point of view,w...Shale gas gathering systems are of great importance in gas fields for the efficient and reliable transportation of gas.In traditional design methods,pipeline layouts are optimized only from an economic point of view,where reliability is evaluated after optimization.However,reliability can be enhanced by spare pipelines so that both economic and reliable aspects are evaluated simultaneously.Based on the idea of enhancing reliability,this research proposes a methodology for optimizing the pipeline layout problem including well clustering,stations site selecting,and piping.Different topology arrangements and spare pipelines are investigated to enhance the production efficiency and reliability of the pipeline network under earthquake-related uncertainties.Reliability evaluation is converted into an economic one so that the objective of this work is to minimize the total annual cost.To solve such a complex problem,genetic algorithm,K-means algorithm,Geo Steiner algorithm,Kruskal algorithm,linear programming and Monte Carlo simulations are combined.A real-world case study illustrates the effectiveness of the proposed methodology and shows a 36.53%reduction in the total annual cost compared with the initial scheme.展开更多
Angle-domain common-image gathers (ADCIGs) transformed from the shot- domain common-offset gathers are input to migration velocity analysis (MVA) and prestack inversion. ADCIGs are non-illusion prestack inversion ...Angle-domain common-image gathers (ADCIGs) transformed from the shot- domain common-offset gathers are input to migration velocity analysis (MVA) and prestack inversion. ADCIGs are non-illusion prestack inversion gathers, and thus, accurate. We studied the extraction of elastic-wave ADCIGs based on amplitude-preserving elastic-wave reverse- time migration for calculating the incidence angle of P- and S-waves at each image point and for different source locations. The P- and S-waves share the same incident angle, namely the incident angle of the source P-waves. The angle of incidence of the source P-wavefield was the difference between the source P-wave propagation angle and the reflector dips. The propagation angle of the source P-waves was obtained from the polarization vector of the decomposed P-waves. The reflectors' normal direction angle was obtained using the complex wavenumber of the stacked reverse-time migration (RTM) images. The ADCIGs of P- and S-waves were obtained by rearranging the common-shot migration gathers based on the incident angle. We used a horizontally layered model, the graben medium model, and part of the Marmousi-II elastic model and field data to test the proposed algorithm. The results suggested that the proposed method can efficiently extract the P- and S-wave ADCIGs of the elastic-wave reverse-time migration, the P- and S-wave incident angle, and the angle-gather amplitude fidelity, and improve the MVA and prestack inversion.展开更多
Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering pr...Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering protocol (DSCP) was proposed to solve the data gathering problem in this scenario.In DSCP,a node evaluates the potential lifetime of the network (from its local point of view) assuming that it acts as the cluster head,and claims to be a tentative cluster head if it maximizes the potential lifetime.When evaluating the potential lifetime of the network,a node considers not only its remaining energy,but also other factors including its traffic load,the number of its neighbors,and the traffic loads of its neighbors.A tentative cluster head becomes a final cluster head with a probability inversely proportional to the number of tentative cluster heads that cover its neighbors.The protocol can terminate in O(n/lg n) steps,and its total message complexity is O(n2/lg n).Simulation results show that DSCP can effectively prolong the lifetime of the network in multi-hop networks with unbalanced traffic load.Compared with EECT,the network lifetime is prolonged by 56.6% in average.展开更多
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil...In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields.展开更多
Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. ...Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. Wireless Sensor Network (WSN) being one of the most efficient technologies possesses immense potential to serve major communication purposes including civil, defense and industrial purposes etc. The inclusion of sensor-mobility with WSN has broadened application horizon. The effectiveness of WSNs can be characterized by its ability to perform efficient data gathering and transmission to the base station for decision process. Clustering based routing scheme has been one of the dominating techniques for WSN systems;however key issues like, cluster formation, selection of the number of clusters and cluster heads, and data transmission decision from sensors to the mobile sink have always been an open research area. In this paper, a robust and energy efficient single mobile sink based WSN data gathering protocol is proposed. Unlike existing approaches, an enhanced centralized clustering model is developed on the basis of expectation-maximization (EEM) concept. Further, it is strengthened by using an optimal cluster count estimation technique that ensures that the number of clusters in the network region doesn’t introduce unwanted energy exhaustion. Meanwhile, the relative distance between sensor node and cluster head as well as mobile sink is used to make transmission (path) decision. Results exhibit that the proposed EEM based clustering with optimal cluster selection and optimal dynamic transmission decision enables higher throughput, fast data gathering, minima delay and energy consumption, and higher展开更多
Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the...Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.展开更多
Kirchhoff beam migration is a simplified Gaussian beam migration,which omits the dynamic information and can calculate multi-arrival traveltime,so it is a high-precision and fast seismic imaging method.In the imaging ...Kirchhoff beam migration is a simplified Gaussian beam migration,which omits the dynamic information and can calculate multi-arrival traveltime,so it is a high-precision and fast seismic imaging method.In the imaging process,extracting common image gathers can be used for velocity analysis,improving the accuracy of modeling and imaging quality.Compared with the conventional common image gathers extracting methods,the angle-domain common image gathers extracting method can avoid the artifacts caused by multi-arrival seismic waves.The authors present a new method of extracting common image gathers in angle-domain from Kirchhoff beam migration and verify the method by numerical calculations.展开更多
Common-image gathers are extensively used in amplitude versus angle(AVA)and migration velocity analysis(MVA).The current state of methods for anisotropic angle gathers extraction use slant-stack,local Fourier transfor...Common-image gathers are extensively used in amplitude versus angle(AVA)and migration velocity analysis(MVA).The current state of methods for anisotropic angle gathers extraction use slant-stack,local Fourier transform or low-rank approximation,which requires much computation.Based on an anisotropic-Helmholtz P/S wave-mode decomposition method,we propose a novel and efficient approach to produce angle-domain common-image gathers(ADCIGs)in the elastic reverse time migration(ERTM)of VTI media.To start with,we derive an anisotropic-Helmholtz decomposition operator from the Christoffel equation in VTI media,and use this operator to derive the decomposed formulations for anisotropic P/S waves.Second,we employ the first-order Taylor expansion to calculate the normalized term of decomposed formulations and obtain the anisotropic-Helmholtz decomposition method,which generates the separated P/S wavefields with correct amplitudes and phases.Third,we develop a novel way that uses the anisotropic-Helmholtz decomposition operator to define the polari-zation angles for anisotropic P/S waves and substitute these angles to decomposing formulations.The polarization angles are then calculated directly from the separated vector P-and S-wavefields and converted to the phase angles.The ADCIGs are thusly produced by applying the phase angles to VTI ERTM.In addition,we develop a concise approximate expression of residual moveout(RMO)for PP-reflections of flat reflectors in VTI media,which avoids the complex transformations between the group angles and the phase angles.The approximate RMO curves show a good agreement with the exact solution and can be used as a tool to assess the migration velocity errors.As demonstrated by two selected examples,our ADCIGs not only produce the correct kinematic responses with regards to different velocity pertubatation,but also generate the reliable amplitude responses versus different angle.The final stacking images of ADCIGs data exhibit the identical imaging effect as that of VTI ERTM.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
文摘The 13th Meeting of the China-Africa Think Tanks Forum took place in Dar es Salaam,Tanzania,on March 8,2024.Under the theme of“China-African Practice:Building a Community with a Shared Future”,the forum delved into the major concerns and strategic cooperation between China and Africa in the new era.It aimed to advance the implementation of various initiatives and accomplishments in China-Africa cooperation while also gathering insights for the upcoming session of the Forum on China-Africa Cooperation(FOCAC).
文摘Shanghai,2 August 2024.Including everything from organic buttons and floral prints,to temperature-regulating and weather-resistant fibres,the apparel value chain is as diverse as it is extensive.Buyers at trade fairs with thousands of exhibitors can be hard pressed finding the fabrics they need,which is a key reason numerous suppliers at autumn's lntertextile Apparel will gather under the banners of specialised zones and pavilions.Taking place from 27-29 August at the National Exhibition and Convention Center (Shanghai),the fair will featu re eight product zones,including Accessories Vision,Functional Lab,and Verve for Design.Meanwhile,suppliers in eight country and region pavilions will showcase various innovations and high-quality textiles.Altogether the platform is set to welcome around 4,000 exhibitors from 25countries and regions.
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(No.2011ZX05003-003,2011ZX05005-005-008 HZ,and 2011ZX05006-002)
文摘Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.
文摘Human living environment interacts with human behaviors.Environment to some degree determines human behaviors which in return reshape and sustain the dynamic environment.Taking Richard Jefferies' The Acorn Gatherer as a case study,this paper makes an argument that the behaviors of the villagers in the story can be more adequately interpreted in view of the backward countryside environment,and the same is true with the author Richard Jefferies' non-interference in the omniscient third-person point of view in writing the story.It is Richard Jefferies' family environment that makes up his viewpoint of writing,reflecting his critical loving of the countryside,where lives boom and conventions are extremely followed.
文摘The Acorn Gatherer by Richard Jefferies is an allegorical tragedy, in which a nameless boy, born out of wedlock, is viewed as a sort of icon of sin, and is ultimately driven to death by the rigid and unforgiving social conventions.
基金This study is jointly supported by the National Key R&D Program of China(2017YFC1500303 and 2020YFA0710604)the Science Foundation of China University of Petroleum,Beijing(2462019YJRC007 and 2462020YXZZ047)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-05).
文摘Reverse Time Migration(RTM)Surface Ofset Gathers(SOGs)are demonstrated to deliver more superior residual dip information than ray-based approaches.It appears more powerful in complex geological settings,such as salt areas.Still,the computational cost of constructing RTM SOGs is a big challenge in applying it to 3D feld data.To tackle this challenge,we propose a novel method using dips of local events as a guide for RTM gather interpolation.The residual-dip information of the SOGs is created by connecting local events from depth-domain to time-domain via ray tracing.The proposed method is validated by a synthetic experiment and a feld example.It mitigates the computational cost by an order of magnitude while producing comparable results as fully computed RTM SOGs.
基金Financial supports from the National Natural Science Foundation of China under Grant(No.22022816 and 22078358)are gratefully acknowledged。
文摘Shale gas gathering systems are of great importance in gas fields for the efficient and reliable transportation of gas.In traditional design methods,pipeline layouts are optimized only from an economic point of view,where reliability is evaluated after optimization.However,reliability can be enhanced by spare pipelines so that both economic and reliable aspects are evaluated simultaneously.Based on the idea of enhancing reliability,this research proposes a methodology for optimizing the pipeline layout problem including well clustering,stations site selecting,and piping.Different topology arrangements and spare pipelines are investigated to enhance the production efficiency and reliability of the pipeline network under earthquake-related uncertainties.Reliability evaluation is converted into an economic one so that the objective of this work is to minimize the total annual cost.To solve such a complex problem,genetic algorithm,K-means algorithm,Geo Steiner algorithm,Kruskal algorithm,linear programming and Monte Carlo simulations are combined.A real-world case study illustrates the effectiveness of the proposed methodology and shows a 36.53%reduction in the total annual cost compared with the initial scheme.
基金supported by Financially Supported by Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0206)National Science and Technology Major Project(No.2016ZX05027-002)+6 种基金China Postdoctoral Science Foundation(No.2017M612219)National Key R&D Plan(Nos.2017YFC0306706 and 2017YFC0307400)Financially Supported by Qingdao National Laboratory for Marine Science and Technology(No.QNLM201708)Natural Science Foundation of Shandong Province(No.ZR2016DB10)National Natural Science Foundation of China(Nos.41674118,41504109,and 41506084)Key Laboratory of Submarine Geosciences Foundation of SOA(No.KLSG1603)Qingdao Municipal Applied Research Projects(No.2016238)
文摘Angle-domain common-image gathers (ADCIGs) transformed from the shot- domain common-offset gathers are input to migration velocity analysis (MVA) and prestack inversion. ADCIGs are non-illusion prestack inversion gathers, and thus, accurate. We studied the extraction of elastic-wave ADCIGs based on amplitude-preserving elastic-wave reverse- time migration for calculating the incidence angle of P- and S-waves at each image point and for different source locations. The P- and S-waves share the same incident angle, namely the incident angle of the source P-waves. The angle of incidence of the source P-wavefield was the difference between the source P-wave propagation angle and the reflector dips. The propagation angle of the source P-waves was obtained from the polarization vector of the decomposed P-waves. The reflectors' normal direction angle was obtained using the complex wavenumber of the stacked reverse-time migration (RTM) images. The ADCIGs of P- and S-waves were obtained by rearranging the common-shot migration gathers based on the incident angle. We used a horizontally layered model, the graben medium model, and part of the Marmousi-II elastic model and field data to test the proposed algorithm. The results suggested that the proposed method can efficiently extract the P- and S-wave ADCIGs of the elastic-wave reverse-time migration, the P- and S-wave incident angle, and the angle-gather amplitude fidelity, and improve the MVA and prestack inversion.
基金Projects(61173169,61103203)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Post-doctoral Program and the Freedom Explore Program of Central South University,China
文摘Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering protocol (DSCP) was proposed to solve the data gathering problem in this scenario.In DSCP,a node evaluates the potential lifetime of the network (from its local point of view) assuming that it acts as the cluster head,and claims to be a tentative cluster head if it maximizes the potential lifetime.When evaluating the potential lifetime of the network,a node considers not only its remaining energy,but also other factors including its traffic load,the number of its neighbors,and the traffic loads of its neighbors.A tentative cluster head becomes a final cluster head with a probability inversely proportional to the number of tentative cluster heads that cover its neighbors.The protocol can terminate in O(n/lg n) steps,and its total message complexity is O(n2/lg n).Simulation results show that DSCP can effectively prolong the lifetime of the network in multi-hop networks with unbalanced traffic load.Compared with EECT,the network lifetime is prolonged by 56.6% in average.
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.
基金financially supported by the National Natural Science Foundation of China (Grant No.51674281)the Opening Fund of Shandong Provincial Key Laboratory of Oil&Gas Storage (Study on low temperature flow characteristics of oil and water in gathering pipeline)the Transportation Safety and the Fundamental Research Funds for the Central Universities
文摘In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields.
文摘Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. Wireless Sensor Network (WSN) being one of the most efficient technologies possesses immense potential to serve major communication purposes including civil, defense and industrial purposes etc. The inclusion of sensor-mobility with WSN has broadened application horizon. The effectiveness of WSNs can be characterized by its ability to perform efficient data gathering and transmission to the base station for decision process. Clustering based routing scheme has been one of the dominating techniques for WSN systems;however key issues like, cluster formation, selection of the number of clusters and cluster heads, and data transmission decision from sensors to the mobile sink have always been an open research area. In this paper, a robust and energy efficient single mobile sink based WSN data gathering protocol is proposed. Unlike existing approaches, an enhanced centralized clustering model is developed on the basis of expectation-maximization (EEM) concept. Further, it is strengthened by using an optimal cluster count estimation technique that ensures that the number of clusters in the network region doesn’t introduce unwanted energy exhaustion. Meanwhile, the relative distance between sensor node and cluster head as well as mobile sink is used to make transmission (path) decision. Results exhibit that the proposed EEM based clustering with optimal cluster selection and optimal dynamic transmission decision enables higher throughput, fast data gathering, minima delay and energy consumption, and higher
基金funded by the National Natural Science Foundation of China (Grant Nos.40871141,41001170,41171232)
文摘Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.
基金the Natural Science Foundation of China(No.41804100)the China Postdoctoral Science Foundation(No.2018M640910)the Fundamental Research Funds for the Central Universities(No.2682018CX36)。
文摘Kirchhoff beam migration is a simplified Gaussian beam migration,which omits the dynamic information and can calculate multi-arrival traveltime,so it is a high-precision and fast seismic imaging method.In the imaging process,extracting common image gathers can be used for velocity analysis,improving the accuracy of modeling and imaging quality.Compared with the conventional common image gathers extracting methods,the angle-domain common image gathers extracting method can avoid the artifacts caused by multi-arrival seismic waves.The authors present a new method of extracting common image gathers in angle-domain from Kirchhoff beam migration and verify the method by numerical calculations.
基金supported by the National Key R&D Program of China(2020YFA0710604 and 2017YFC1500303)the Science Foundation of the China University of Petroleum,Beijing(2462019YJRC007 and 2462020YXZZ047)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-05).
文摘Common-image gathers are extensively used in amplitude versus angle(AVA)and migration velocity analysis(MVA).The current state of methods for anisotropic angle gathers extraction use slant-stack,local Fourier transform or low-rank approximation,which requires much computation.Based on an anisotropic-Helmholtz P/S wave-mode decomposition method,we propose a novel and efficient approach to produce angle-domain common-image gathers(ADCIGs)in the elastic reverse time migration(ERTM)of VTI media.To start with,we derive an anisotropic-Helmholtz decomposition operator from the Christoffel equation in VTI media,and use this operator to derive the decomposed formulations for anisotropic P/S waves.Second,we employ the first-order Taylor expansion to calculate the normalized term of decomposed formulations and obtain the anisotropic-Helmholtz decomposition method,which generates the separated P/S wavefields with correct amplitudes and phases.Third,we develop a novel way that uses the anisotropic-Helmholtz decomposition operator to define the polari-zation angles for anisotropic P/S waves and substitute these angles to decomposing formulations.The polarization angles are then calculated directly from the separated vector P-and S-wavefields and converted to the phase angles.The ADCIGs are thusly produced by applying the phase angles to VTI ERTM.In addition,we develop a concise approximate expression of residual moveout(RMO)for PP-reflections of flat reflectors in VTI media,which avoids the complex transformations between the group angles and the phase angles.The approximate RMO curves show a good agreement with the exact solution and can be used as a tool to assess the migration velocity errors.As demonstrated by two selected examples,our ADCIGs not only produce the correct kinematic responses with regards to different velocity pertubatation,but also generate the reliable amplitude responses versus different angle.The final stacking images of ADCIGs data exhibit the identical imaging effect as that of VTI ERTM.