As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mecha...The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mechanisms nowdo not do well in balancing the energy consumption among nodes with different distances to the sink, thus they can hardly avoid the problem that nodes near the sink consume energy more quickly, which may cause the network rupture from the sink node. This paper presents a data gathering mechanism called PODA, which grades the output power of nodes according to their distances from the sink node. PODA balances energy consumption by setting the nodes near the sink with lower output power and the nodes far from the sink with higher output power. Simulation results show that the PODA mechanism can achieve even energy consumption in the entire network, improve energy efficiency and prolong the network lifetime.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金Supported by National Natural Science Foundation of P. R. China (60434030, 60673178)
文摘The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mechanisms nowdo not do well in balancing the energy consumption among nodes with different distances to the sink, thus they can hardly avoid the problem that nodes near the sink consume energy more quickly, which may cause the network rupture from the sink node. This paper presents a data gathering mechanism called PODA, which grades the output power of nodes according to their distances from the sink node. PODA balances energy consumption by setting the nodes near the sink with lower output power and the nodes far from the sink with higher output power. Simulation results show that the PODA mechanism can achieve even energy consumption in the entire network, improve energy efficiency and prolong the network lifetime.