期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
1
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
Flow Characteristics of Crude Oil with High Water Fraction during Non-heating Gathering and Transportation 被引量:1
2
作者 LüYuling Tan Hao +2 位作者 Li Jiao Yang Donghai Xu Peiyang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第1期88-97,共10页
In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil... In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields. 展开更多
关键词 crude oil with high water fraction non-heating gathering and transportation flow pattern pressure drop safe temperature
下载PDF
Influence of Oil and Water Components on Wall-sticking Occurrence Temperature in High Water-cut Crude Oil Pipeline 被引量:1
3
作者 Cheng Xianwen Huang Qiyu +3 位作者 Wang Kun Cui Yue Hei Shunan Yu Le 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第4期51-63,共13页
To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSO... To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSOT).The WSOT and the interactions among oil,water,and surface solids are measured and calculated by various devices under different values of the wax content,water pH,and salinity.The results show that there is greater correlation between the wax content and WSOT than between resins/asphaltenes and WSOT.Furthermore,the wax content,water pH,and salinity have different effects on WSOT.There is generally a positive correlation between wax content and WSOT,whereas the maximum WSOT occurs when the water pH is in the range 5.7–6.5,and decreases under more acidic or alkaline conditions.As the salinity increases,WSOT decreases slightly,but quickly becomes saturated.In terms of interactions,variations in the interfacial tension and adhesion work with pH and salinity are consistent with that of WSOT,while the contact angle exhibits the opposite relation. 展开更多
关键词 non-heating gathering and transportation wall sticking occurrence temperature interfacial tension contact angle adhesion energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部