As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil...In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields.展开更多
To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSO...To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSOT).The WSOT and the interactions among oil,water,and surface solids are measured and calculated by various devices under different values of the wax content,water pH,and salinity.The results show that there is greater correlation between the wax content and WSOT than between resins/asphaltenes and WSOT.Furthermore,the wax content,water pH,and salinity have different effects on WSOT.There is generally a positive correlation between wax content and WSOT,whereas the maximum WSOT occurs when the water pH is in the range 5.7–6.5,and decreases under more acidic or alkaline conditions.As the salinity increases,WSOT decreases slightly,but quickly becomes saturated.In terms of interactions,variations in the interfacial tension and adhesion work with pH and salinity are consistent with that of WSOT,while the contact angle exhibits the opposite relation.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金financially supported by the National Natural Science Foundation of China (Grant No.51674281)the Opening Fund of Shandong Provincial Key Laboratory of Oil&Gas Storage (Study on low temperature flow characteristics of oil and water in gathering pipeline)the Transportation Safety and the Fundamental Research Funds for the Central Universities
文摘In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields.
基金supported by the National Natural Science Foundation of China(NNFC,Grant No.51534007).
文摘To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSOT).The WSOT and the interactions among oil,water,and surface solids are measured and calculated by various devices under different values of the wax content,water pH,and salinity.The results show that there is greater correlation between the wax content and WSOT than between resins/asphaltenes and WSOT.Furthermore,the wax content,water pH,and salinity have different effects on WSOT.There is generally a positive correlation between wax content and WSOT,whereas the maximum WSOT occurs when the water pH is in the range 5.7–6.5,and decreases under more acidic or alkaline conditions.As the salinity increases,WSOT decreases slightly,but quickly becomes saturated.In terms of interactions,variations in the interfacial tension and adhesion work with pH and salinity are consistent with that of WSOT,while the contact angle exhibits the opposite relation.