Large goods transported in railway are kinds of special goods and they are very important in national construction. In order to transport safely, loading and reinforcing schemes must be made first. How to design a rea...Large goods transported in railway are kinds of special goods and they are very important in national construction. In order to transport safely, loading and reinforcing schemes must be made first. How to design a reasonable scheme will be affected by many factors. This paper presents the characteristic of the large goods, summarizes the process of designing a loading and reinforcing scheme of large good, then probes the factors of affecting the loading and reinforcing scheme and gives a detail analysis. It’s considered that those out-of-gauge and overweight degree of goods, center-of- gravity height of a loaded wagon, position of center-of-gravity of goods, type of wagon for using, reinforcement material and reinforcement method, transport expense and transport organization could affect a scheme in the aspects of safety, economy, rapidity and convenience. This conclusion will instruct and help to make a good scheme.展开更多
Generalized solutions of the standard gauge transformation equations are presented and discussed in physical terms. They go beyond the usual Dirac phase factors and they exhibit nonlocal quantal behavior, with the wel...Generalized solutions of the standard gauge transformation equations are presented and discussed in physical terms. They go beyond the usual Dirac phase factors and they exhibit nonlocal quantal behavior, with the well-known Relativistic Causality of classical fields affecting directly the phases of wavefunctions in the Schr?dinger Picture. These nonlocal phase behaviors, apparently overlooked in path-integral approaches, give a natural account of the dynamical nonlocality character of the various (even static) Aharonov-Bohm phenomena, while at the same time they seem to respect Causality. For particles passing through nonvanishing magnetic or electric fields they lead to cancellations of Aharonov-Bohm phases at the observation point, generalizing earlier semiclassical experimental observations (of Werner & Brill) to delocalized (spread-out) quantum states. This leads to a correction of previously unnoticed sign-errors in the literature, and to a natural explanation of the deeper reason why certain time-dependent semiclassical arguments are consistent with static results in purely quantal Aharonov-Bohm configurations. These nonlocalities also provide a remedy for misleading results propagating in the literature (concerning an uncritical use of Dirac phase factors, that persists since the time of Feynman’s work on path integrals). They are shown to conspire in such a way as to exactly cancel the instantaneous Aharonov-Bohm phase and recover Relativistic Causality in earlier “paradoxes” (such as the van Kampen thought-experiment), and to also complete Peshkin’s discussion of the electric Aharonov-Bohm effect in a causal manner. The present formulation offers a direct way to address time-dependent single- vs double-slit experiments and the associated causal issues—issues that have recently attracted attention, with respect to the inability of current theories to address them.展开更多
采用射频磁控溅射法在Ni基高温合金拉伸件上制备Ni Cr Al Y薄膜应变计。研究了热稳定处理对Ni Cr Al Y薄膜结构、表面形貌的影响,并且测试了Ni Cr Al Y薄膜应变计的电学与应变性能。结果表明:热稳定处理后Ni Cr Al Y薄膜应变计由于在...采用射频磁控溅射法在Ni基高温合金拉伸件上制备Ni Cr Al Y薄膜应变计。研究了热稳定处理对Ni Cr Al Y薄膜结构、表面形貌的影响,并且测试了Ni Cr Al Y薄膜应变计的电学与应变性能。结果表明:热稳定处理后Ni Cr Al Y薄膜应变计由于在表面形成了一层Al2O3膜,具有抗高温氧化的特性,在室温~800℃范围内,应变计电阻同温度呈线性变化,电阻温度系数(TCR)约为290×10^-6/℃,室温下的应变计系数(GF)为2.1。展开更多
文摘Large goods transported in railway are kinds of special goods and they are very important in national construction. In order to transport safely, loading and reinforcing schemes must be made first. How to design a reasonable scheme will be affected by many factors. This paper presents the characteristic of the large goods, summarizes the process of designing a loading and reinforcing scheme of large good, then probes the factors of affecting the loading and reinforcing scheme and gives a detail analysis. It’s considered that those out-of-gauge and overweight degree of goods, center-of- gravity height of a loaded wagon, position of center-of-gravity of goods, type of wagon for using, reinforcement material and reinforcement method, transport expense and transport organization could affect a scheme in the aspects of safety, economy, rapidity and convenience. This conclusion will instruct and help to make a good scheme.
文摘Generalized solutions of the standard gauge transformation equations are presented and discussed in physical terms. They go beyond the usual Dirac phase factors and they exhibit nonlocal quantal behavior, with the well-known Relativistic Causality of classical fields affecting directly the phases of wavefunctions in the Schr?dinger Picture. These nonlocal phase behaviors, apparently overlooked in path-integral approaches, give a natural account of the dynamical nonlocality character of the various (even static) Aharonov-Bohm phenomena, while at the same time they seem to respect Causality. For particles passing through nonvanishing magnetic or electric fields they lead to cancellations of Aharonov-Bohm phases at the observation point, generalizing earlier semiclassical experimental observations (of Werner & Brill) to delocalized (spread-out) quantum states. This leads to a correction of previously unnoticed sign-errors in the literature, and to a natural explanation of the deeper reason why certain time-dependent semiclassical arguments are consistent with static results in purely quantal Aharonov-Bohm configurations. These nonlocalities also provide a remedy for misleading results propagating in the literature (concerning an uncritical use of Dirac phase factors, that persists since the time of Feynman’s work on path integrals). They are shown to conspire in such a way as to exactly cancel the instantaneous Aharonov-Bohm phase and recover Relativistic Causality in earlier “paradoxes” (such as the van Kampen thought-experiment), and to also complete Peshkin’s discussion of the electric Aharonov-Bohm effect in a causal manner. The present formulation offers a direct way to address time-dependent single- vs double-slit experiments and the associated causal issues—issues that have recently attracted attention, with respect to the inability of current theories to address them.
文摘采用射频磁控溅射法在Ni基高温合金拉伸件上制备Ni Cr Al Y薄膜应变计。研究了热稳定处理对Ni Cr Al Y薄膜结构、表面形貌的影响,并且测试了Ni Cr Al Y薄膜应变计的电学与应变性能。结果表明:热稳定处理后Ni Cr Al Y薄膜应变计由于在表面形成了一层Al2O3膜,具有抗高温氧化的特性,在室温~800℃范围内,应变计电阻同温度呈线性变化,电阻温度系数(TCR)约为290×10^-6/℃,室温下的应变计系数(GF)为2.1。