In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic me...In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.展开更多
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t...The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.展开更多
By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form with a real-valued function which is non-increasing a...By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form with a real-valued function which is non-increasing and decreases in infinity more rapidly than any exponential functions , possesses zeros only on the imaginary axis. The Riemann zeta function as it is known can be related to an entire functionwith the same non-trivial zeros as . Then after a trivial argument displacement we relate it to a function with a representation of the form where is rapidly decreasing in infinity and satisfies all requirements necessary for the given proof of the position of its zeros on the imaginary axis z=iy by the second mean-value theorem. Besides this theorem we apply the Cauchy-Riemann differential equation in an integrated operator form derived in the Appendix B. All this means that we prove a theorem for zeros of on the imaginary axis z=iy for a whole class of function which includes in this way the proof of the Riemann hypothesis. This whole class includes, in particular, also the modified Bessel functions for which it is known that their zeros lie on the imaginary axis and which affirms our conclusions that we intend to publish at another place. In the same way a class of almost-periodic functions to piece-wise constant non-increasing functions belong also to this case. At the end we give shortly an equivalent way of a more formal description of the obtained results using the Mellin transform of functions with its variable substituted by an operator.展开更多
In this paper, the extremal problem, min, of two convex bodies K and L in ?n is considered. For K to be in extremal position in terms of a decomposition of the identity, give necessary conditions together with the opt...In this paper, the extremal problem, min, of two convex bodies K and L in ?n is considered. For K to be in extremal position in terms of a decomposition of the identity, give necessary conditions together with the optimization theorem of John. Besides, we also consider the weaker optimization problem: min. As an application, we give the geometric distance between the unit ball B2n and a centrally symmetric convex body K.展开更多
Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust ...Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.展开更多
基金supported by NNSF of China(11171260)RFDP of Higher Education of China(20100141110054)
文摘In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.
文摘The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.
文摘By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form with a real-valued function which is non-increasing and decreases in infinity more rapidly than any exponential functions , possesses zeros only on the imaginary axis. The Riemann zeta function as it is known can be related to an entire functionwith the same non-trivial zeros as . Then after a trivial argument displacement we relate it to a function with a representation of the form where is rapidly decreasing in infinity and satisfies all requirements necessary for the given proof of the position of its zeros on the imaginary axis z=iy by the second mean-value theorem. Besides this theorem we apply the Cauchy-Riemann differential equation in an integrated operator form derived in the Appendix B. All this means that we prove a theorem for zeros of on the imaginary axis z=iy for a whole class of function which includes in this way the proof of the Riemann hypothesis. This whole class includes, in particular, also the modified Bessel functions for which it is known that their zeros lie on the imaginary axis and which affirms our conclusions that we intend to publish at another place. In the same way a class of almost-periodic functions to piece-wise constant non-increasing functions belong also to this case. At the end we give shortly an equivalent way of a more formal description of the obtained results using the Mellin transform of functions with its variable substituted by an operator.
文摘In this paper, the extremal problem, min, of two convex bodies K and L in ?n is considered. For K to be in extremal position in terms of a decomposition of the identity, give necessary conditions together with the optimization theorem of John. Besides, we also consider the weaker optimization problem: min. As an application, we give the geometric distance between the unit ball B2n and a centrally symmetric convex body K.
文摘Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.